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Abstract

A dimensional analysis derivation of Wien’s formula on black-body
radiation by using Stephan-Boltzmann’s T 4 law, which also can be de-
rived by classical electromagnetic theory and classical thermodynam-
ics.

1 Introduction

A lot of text books on quantum physics or statistical physics mention
Wien’s law, but none of them1 shows its derivation. I guess it is partly
because the Wien’s original derivation is rather lengthily and complex
and students can not learn much from it. Derivation provided here
gives simple and short explanation of the law. Although this is not a
proof, this derivation has its own advantage. It suggests a universal
constant which is known as Planck’s action today. This derivation
demonstrates another example that dimension analysis gives right an-
swer. Needless to say, dimension analysis is an important practice.

2 Derivation

What we want is energy spectrum density per unit volume ρ(ω, T ).
First of all, we know temperature is average energy of the system
and always shows up in the form of kT in laws of physics, where k is
Boltzmann constant. We are thinking of black body radiation which

1which I have :-)
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is related to electromagnetism and is not depend on material of black
body itself. Let us use speed of light c as well as ω and kT . Rayleigh-
Jeans law is obtained by making energy spectrum density from these
three quantities.

ρ(ω, T ) = A
kT

c3
ω2, (1)

where A is dimensionless. ρ(ω, T ) has to satisfy Stephan-Boltzmann
law:

u(T ) =
∫ ∞

0
ρ(ω, T )dω = σT 4 (2)

Suppose that this dimensionless quantity is in fact a function of ω and
T , we can write such function as A(ωT r).2 At this moment we do not
know how to make dimensionless quantity just from ω and T , but we
will come back later. Putting Eq. 1 into Eq. 2, we get,

u(T ) =
kT

c3

∫ ∞

0
ω2A(ωT r)dω.

We want to take T out of the integral, by introducing y = ωT r,

u(T ) =
kT

c3

∫ ∞

0

y2

T 2r
A(y)

1
T r

dy =
kT (1−3r)

c3

∫ ∞

0
y2A(y)dy.

Thus, since the integral is constant, r has to be −1 to meet Stephan-
Boltzmann’s T 4 law (2). Finally ρ(ω, T ) can be written as follows:

ρ(ω, T ) ∝ A(ω/T ) · kT

c3
ω2 = ω3 · A(ω/T )

c3
kT/ω

This is Wien’s law. Now we have to come back to the issue mentioned
earlier – how to construct dimensionless quantity from ω and T . This
issue is now reduced to how to construct dimensionless quantity from
ω/T . We know Boltzmann constant which relates temperature to
energy. If there is a constant, say h̄, which relates frequency to energy,
h̄ω/kT become dimensionless.

Appendix: Stephan-Boltzmann’s Law

You can find this derivation in many text books on thermodynam-
ics. Here we provide it just to make this article self-contained. From

2In case A’s dependency is ωsT r, we can always rewrite A as A((ωT r/s)s), and replace
A and r by A′(x) = A(xs) and r′ = r/s.
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Maxwell’s equation, one can show3 radiation pressure is u(T )/3, where
u(T ) is energy density per unit volume:

p = u(T )/3, U(T ;V ) = V u(T ).

Using above and thermodynamic equation:

U(T ;V ) = T · S(T ;V ) + F [T ;V ]

We get,

u(T ) =
(

∂U

∂V

)
T

= T

(
∂S

∂V

)
T

+
(

∂F

∂V

)
T

,

= T

(
∂p

∂T

)
V

− p,

=
T

3
du(T )

dT
− u(T )

3
.

Here we used thermodynamic relation p = −(∂F/∂V )T and (∂S/∂V )T =
(∂p/∂T )V . u(T ) satisfies the following equation:

T
du(T )

dT
= 4u(T )

Thus,
u(T ) ∝ T 4.

3See e.g.,
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