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Feynman units!?

• It is a clickbait, there is no such unit system.

• But I would like to go over constants, units and notations of electrodynamics

• and introduce what Feynman used in this Lectures on Physics (FLP) to you

• to summarize

▶ Among ε0, µ0, c, we only need two of them

▶ Feynman used ε0 and c and I think this makes more sense

▶ B in Gaussian units is different quantity than B in SI



Microscopic Maxwell’s equations

∇×E +
∂B

∂t
= 0 ∇·E = ρ/ε0

∇×B − µ0ε0
∂E

∂t
= µ0 j ∇·B = 0

We have two constants: ε0 µ0.



Two constants: ε0 µ0

ε0 and µ0 relates charge and current to mechanical force, respectively.

F =
1

4πε0
· Q1Q2

r2
F =

µ0

2π
· I1 I2

r2

Since current is flow of charge, ε0 and µ0 cannot be independent.
Indeed, they have following relationship:

ε0 µ0 =
1

c2
or µ0 =

1

ε0 c2

While c (the speed of light) does not depend on how we chose the unit of charge

How about using ε0 and c instead of ε0 and µ0?



Using ε0 and c instead of ε0 and µ0

∇×E +
∂B

∂t
= 0 ∇·E = ρ/ε0

∇×B − µ0ε0
∂E

∂t
= µ0 j ∇·B = 0

▶ This is what Feynman used in his “Lectures on Physics ”

▶ Notice E and B are in different dimension ([∇] = L−1,
[
∂
∂t

]
= T−1)

▶ It is cB that has the same dimension as E ([∇] =
[
1
c
∂
∂t

]
= L−1)

▶ And coefficient of j is now 1/ε0c
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Coefficient of j: 1/ε0 c

Recalling that 1/c =
√
ε0µ0

1

ε0c
=

1

ε0
· √ε0µ0 =

√
µ0

ε0
∼ 377Ω

This is impedance of free space



Now

∇×E +
1

c

∂cB

∂t
= 0 ∇·E = ρ/ε0

∇×cB − 1

c

∂E

∂t
=

j

ε0c
∇·cB = 0

▶ We have two constants, ε0 and c

▶ ε0 is for charge. c is for electromagnetic field

▶ Coefficient of j is impedance of free space, 377Ω

▶ We treat cB as a single symbol as it has the same dimension as E
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Why dimension is so important?

Dimension check is primary method to detect errors in your calculation

You cannot equate, add or subtract quantities in different dimension

Simpler dimension makes error detection easier



u and S

u =
ε0
2

(
|E|2 + |cB|2

)

S = ε0c
(
E × cB

)

Note that ε0 is capacitance per length, E and cB is voltage per length,

and 1/ε0c is resistance.



Gaussian units

∇×E +
1

c

∂B

∂t
= 0 ∇·E = 4πρ

∇×B − 1

c

∂E

∂t
=

4π

c
j ∇·B = 0

▶ This is Maxwell’s equations in Gaussian units

▶ Notice that E and B are in the same unit (dimension)

▶ It has dimensionless number 4π instead of 1/ε0, i.e., F =
Q1Q2

r2
in Gaussian

▶ 4π/c is still impedance of free space, but in seconds per centimeter!



Gaussian units is popular among physicists

“Unfortunately one of the results of the completely disconnected way in which
electricity and magnetism have been taught in the past has been the growing
acceptance of the mks over the cgs system of units. We have no special
preference for centimeters over meters or of grams over kilograms. We do,
however, require a system wherein the electric field E and the magnetic field B
are in the same unit.”

— Melvin Schwarts, Principles of Electrodynamics, (1972)



Gaussian units is popular among physicists, but ...

“My tardy adoption of the universally accepted SI system is recognition that
almost all undergraduate physics texts, as well as engineering book at all levels,
employ SI units throughout. For many years Ed Purcell (1912–1997) and I had a
pact to support each other in the use of Gaussian units. Now I have betrayed
him!”

— John David Jackson, Classical Electrodynamics, (1998)

“For 50 years, Edward Purcell’s classic textbook has introduced students to the
world of electricity and magnetism. This third edition has been brought up to
date and is now in SI units.”

— Edward M. Purcell and David J. Morin, Electricity and Magnetism, (2013)



Gaussian units with ε0

∇×E +
1

c

∂B

∂t
= 0 ∇·E = ρ/ε0

∇×B − 1

c

∂E

∂t
=

1

ε0c
j ∇·B = 0

▶ Notice similarity to equations in SI with ε0 and c

▶ Substitute 1/ε0 with 4π to go to Gaussian

▶ Substitute B with cB to go to SI

▶ B in SI is not the same quantity as B in Gaussian units! (cB is)



Hall coefficient

Now we see why Hall coefficient is different.

In SI, RH = 1/nq,

Ey = RH jx B =
1

nq
jx B =

1

nqc
jx cB (SI)

Perform cB → B to go to Gaussian

Ey =
1

nqc
jx B (Gaussian)

Therefore

RH =
1

nqc
(Gaussian)



Statics

∇×E +
1

c

∂cB

∂t
= 0 ∇·E = ρ/ε0

∇×cB − 1

c

∂E

∂t
=

j

ε0c
∇·cB = 0

▶ Remove time derivatives

▶ E and cB are independent. Electrostatics and magnetostatics are distinct

▶ May make sense to use µ0, because E is not related to B
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Non-relativistic limit
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1

c

∂cB

∂t
= 0 ∇·E = ρ/ε0

∇×cB − 1

c

∂E

∂t
=

j

ε0c
∇·cB = 0

▶ What happens if c → ∞?

▶ B vanishes. c has to be finite for B to exist

▶ Magnetism is relativistic effect
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ρ and j

ρ and j includes all the charge, electrons and ions.

ρ =
∑
i

qi δ
3(r − ri) j =

∑
i

vi qi δ
3(r − ri)

We introduce P and M to bridge microscopic world to macroscopic world.

ρ = ρ(f) −∇·P j = j(f) +
∂P

∂t
+ ∇×M



D and H

∇·E =
1

ε0
ρ

∇×cB − 1

c

∂E

∂t
=

1

ε0c
j

▶ Insert previous page’s definition and move P and M to the other side

▶ I wish I could use D = E + P /ε0 and H = cB −M/ε0c (it’s cleaner )

▶ We customary use D = ε0E + P and H = ε0c
2B −M (more units )

▶ Feynman used H = B −M/ε0c
2 to make H to have the same units as B
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D and H

∇·
(
E + P /ε0

)
= ρ(f)/ε0

c2∇×
(
B −M/ε0c

2
)
− ∂(E + P /ε0)

∂t
=

j(f)

ε0

▶ Insert previous page’s definition and move P and M to the other side
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2 to make H to have the same units as B



Macroscopic Maxwell’s equations (SI with ε0 and c)

∇×E +
∂B

∂t
= 0 ∇·B = 0

∇·D = ρ(f) D = (ε0E + P )

∇×H − ∂D

∂t
= j(f) H =

(
ε0c

2B −M
)

E, B, D, H are in different units

Some people in the past thought this is cleaner, because constants are hidden



Macroscopic Maxwell’s equations (Feynman)

∇×E +
∂B

∂t
= 0 ∇·B = 0

∇·(ε0E + P ) = ρother D/ε0 =
(
E + P /ε0

)
c2∇×

(
B − M

ε0c2

)
=

jcond
ε0

+
∂

∂t

(
E − P

ε0

)
H =

(
B − M

ε0c2

)

Please read FLP Vol II Chap 36

https://www.feynmanlectures.caltech.edu/II_36.html


Macroscopic Maxwell’s equations (Gaussian units)

∇×E +
1

c

∂B

∂t
= 0 ∇·B = 0

∇·D = 4π ρ(f) D = (E + 4πP )

∇×H − 1

c

∂D

∂t
=

4π

c
j(f) H = (B − 4πM)

E, B, D, H are in the same unit

D and H in Gaussian are different quantities than those in SI



Macroscopic Maxwell’s equations (Gaussian units with ε0)

∇×E +
1

c

∂B

∂t
= 0 ∇·B = 0

∇·D = ρ(f)/ε0 D = (E + P /ε0)

∇×H − 1

c

∂D

∂t
=

1

ε0c
j(f) H = (B −M/ε0)

Substitute 4π with 1/ε0 to give charge a dimension



Macroscopic Maxwell’s equations (Gaussian units with ε0)

∇×E +
1

c

∂B

∂t
= 0 ∇·B = 0

∇·E =
1

ε0

(
ρ(f) −∇·P

)

∇×B − 1

c

∂E

∂t
=

1

ε0c

(
j(f) +

∂P

∂t
+ ∇×cM

)

EM field in the left, material in the right hand side

You can go to SI with B → cB and M → M/c



c ε0 qe

“∼” means measured, “=” means defined qe is elementary charge

▶ Gaussian

c ∼ 2.998× 1010 cm/s ε0 =
1

4π
qe ∼ 4.803× 10−10 statC

(
cm3/2g1/2s−1

)
▶ SI before 2019

c = 299792458m/s ε0 =
107

4π (c/(m/s))
2 F/m qe ∼ 1.602× 10−19 C

▶ SI after 2019

c = 299792458m/s ε0 ∼ 8.8854× 10−12 F/m qe = 1.602176634× 10−19 C

Gaussian units cannot be accurate theory any longer, because you can’t modify 1/4π



Dimensions for SI quantities ([◦] reads dimension of ◦)

[
E
]
=

[
cB

]
=

[
Voltage

Length

] [
ρ
]
=

[
Charge

Length3

] [
j
]
=

[
Current

Length2

] [
ε0
]
=

[
Cap

Length

]
[
∇·E =

ρ

ε0

]
=

[
Voltage

Length2
=

Charge

Cap · Length2

] (
V =

Q

C

) [
ε0

S

d

]
=

[
Cap

]
[
Time

]
=

[
Res · Cap

]
(τ = RC)

[
1/ε0c

]
=

[
Time/Cap

]
=

[
Res

]
[
∇×cB − 1

c

∂E

∂t
=

1

ε0c
j

]
=

[
Voltage

Length2
= Res · Current

Length2

] (
V = RI

)
[j = σE] =

[
Current

Length2
=

1

Res · Length
· Voltage
Length

] (
I =

V

R

)



“The difficulty of science are to a large extent the difficulties of notation, the
units, and all the other artificialities which are invented by man, not by nature.”

— Richard P. Feynman, The Feynman Lectures on Physics
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