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Abstract

A derivation of Maxwell’s equations is presented. We start with the relativistic
equation of motion and introduce the force tensor Rµν with which the four-force Kµ

can be written as Kµ = uνRµν , where uµ is the four-velocity. We show that if such a
tensor exists it has to be anti-symmetric. Then, we show that the electrostatic force
can be written with such an anti-symmetric tensor and introduce the electromagnetic
tensor Fµν such that Kµ = q uνFµν . The Lorentz force is derived from the Lorentz
transformation of Fµν . The first set of Maxwell’s equations is derived from ∂νFµν . From
the symmetry of the Lorentz transformation of Fµν , we introduce dual tensor F̃µν from
which we derive the second set of Maxwell’s equations. Although we have to introduce
four-vector, the calculation effort required is much less than other approaches, because
we separated velocity out from the four-force by introducing the force-tensor.

1 Introduction

There are a few other drivations widely available. Schwartz[1] begins with Poisson’s
equation and transforms it into a Lorentz covariant form by introducing the vec-
tor potential and compensating missing terms leading to the electromagnetic tensor.
Purcell[2], Elliott[3] and Haskell[4] use Lorentz transformations of electrostatic equa-
tions. Purcell’s treatment is the most pedagogical while Elliott is more straight forward.
Both use ordinary three dimensional vectors. Haskell follows Elliott’s procedure but
uses four-vector notation.
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In this report, we begin with the relativistic equation of motion and introduce force
tensor Rµν with which the four-forceKµ can be written asKµ = uνRµν , where uµ is the
four-velocity. We show that if such a tensor exists it must be anti-symmetric. Then, we
demonstrate that the electrostatic force can be written with such an anti-symmetric
tensor and introduce the electromagnetic tensor Fµν such that Kµ = q uνFµν . The
Lorentz force is derived from the Lorentz transformation of Fµν . The first set of
Maxwell’s equations is derived from ∂νFµν . From the symmetry of the Lorentz trans-
formation of Fµν , we introduce the dual tensor F̃µν from which we derive the second
set of Maxwell’s equations.

This derivation stands similar position as Schwartz’s but without introducing poten-
tials. It makes it more evident that the Lorentz force and the Lorentz transformation of
fields originates from the force tensor in the Minkowski space. Although we have to in-
troduce four-vector, the calculation effort required is much less than other approaches,
because we separated velocity out from the four-force by introducing the force-tensor.

This report is intended for non-experts. We refrain from using advanced mathemat-
ics such as the metric tensor. We follow the notation used in the Feynman’s Lectures[5],
which is summaried in Appendix A.

2 Derivation

2.1 Reference Frames

We consider two inertial frames S and S′ such that S′ is moving at velocity V relative
to S. We will use γ and β defined below.

γ =
1√

1− β2
, β = |β| , β = V /c. (2.1)

We will use these only for relative velocity between inertial frames, not for velocity of
the particle to avoid confusion. The Lorentz transformation of a four-vector (xt,x)
from S to S′ is given below.

x′ = x⊥ + γ
(
x∥ − β xt

)
, x′t = γ (xt − β · x) , (2.2)

where x⊥ and x∥ is normal and parallel component of x with respect to β, namely,

x = x⊥ + x∥, x∥ =
β (β · x)

β2
. (2.3)

The inverse transformation is obtained by inverting V , thus β.

x = x′
⊥ + γ

(
x′
∥ + β x′t

)
, xt = γ

(
x′t + β · x′) . (2.4)
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2.2 Force Tensor

Let us begin with the relativistic equation of motion of a particle whose mass and
coordinate are m and (ct, r), respectively.

mc2
d uµ
ds

= Kµ,

where uµ is the four-velocity of the particle.

u = uµ =
d (c t, r)

ds
=

(c dt, dr)

c dt
√
1− (v/c)2

=
1√

1− (v/c)2

(
1,

v

c

)
. (2.5)

Kµ is the four-force acting on the particle.

K = Kµ =
1√

1− (v/c)2

(v
c
· f , f

)
(2.6)

Suppose that we can express four-force Kµ by four-velocity uµ and a tensor Rµν ,
like below.

mc2
d uµ
ds

= Kµ = uνRµν

If such Rµν exits, it must be anti-symmetric. The explanation follows.

Taking inner product with uµ yields

mc2 uµ
d uµ
ds

= uµuνRµν .

The left hand side is zero, because uµuµ = 1.

mc2 uµ
d uµ
ds

=
mc2

2

d uµuµ
ds

= 0

Therefore, uµuνRµν must be zero which means Rµν has to be anti-symmetric.1

We get Eq. (2.6) with R = Rµν = (f , 0).

uR = (ut, u) (f , 0) ,

=
1√

1− (v/c)2

(v
c
· f , f

)
= K,

where we used Eqs. (A.2) and (2.5).

1See Appendix A.2 for more about anti-symmetric tensors.
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In case R = (p, q),

K = uR = (ut, u) (p, q) = (u · p, ut p+ u× q) ,

=
1√

1− (v/c)2

(v
c
· p, p+

v

c
× q

)
.

Therefore,

f = p+
v

c
× q.

In case both p and q does not depend of v, the Lorentz transformation of R = (p, q)
will be, from Eqs. (A.3) and (A.4),

p′ = p∥ + γ
(
p+ β × q

)
⊥ (2.7)

q′ = q∥ + γ
(
q − β × p

)
⊥ (2.8)

The inverse transformation of above is obtained by changing the sign of β.

p = p′
∥ + γ

(
p′ − β × q′

)
⊥, (2.9)

q = q′∥ + γ
(
q′ + β × p′)

⊥. (2.10)

2.3 Maxwell’s Equations

We assume continuity of charge holds in any inertial frame,

∂ρ

∂t
+∇·j = 0,

where ρ and j are charge density and current density, respectively. This leads to ρ and
j forming a four-vector j = (cρ, j), because this continuity equation can be viewed as
the inner product of the four-gradient and the four-current is zero, or a scalar.

Suppose that all the charge is at rest in S′, i.e., j′ = 0.

j′ =
(
cρ′, j′

)
, j′ = 0. (2.11)

Static charge density ρ′ creates static electric field E′.

∇′ ·E′ = ρ′/ε0, ∇′ ×E′ = 0 (2.12)

Let us consider motion of a charged particle whose charge q is very small so that
its motion will not affect the rest of charges and thus the charge density. We assume
q is Lorentz invariant, i.e., q′ = q. The force acting on the charged particle f ′ is

f ′ = qE′.
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Since E′ does not depend on the velocity v of the particle, we can use the force tensor.

K′ = q (u′t,u
′)(E′, 0).

In S, all charges except for q are moving uniformly at V , four-force K is, according to
Eqs. (2.9) and (2.10),

K = q (ut,u)(E
′
∥ + γE′

⊥, β × γE′).

This gives

f = q
(
E′

∥ + γE′
⊥ +

v

c
×
(
β × γE′)).

(E′
∥ + γE′

⊥) is electric field in S and (β × γE′) can be interpreted as magnetic field.

Now, we define the electromagnetic tensor F as below.2

cF = (E, cB)

Giving four-velocity of the particle u to F yields four-force K.

q u cF = K = q (ut,u) (E, cB) = q (u ·E, utE + u× cB) ,

=
q√

1− (v/c)2

(
v

c
·E, E +

v

c
× cB

)
Applying the four-gradient Ç to F yields a four-vector.

Ç cF =

(
1

c

∂

∂t
, −∇

)(
E, cB

)
=

(
−∇·E,

1

c

∂E

∂t
−∇×cB

)
Recalling that ∇′ · E′ = ρ′/ε0 in S′, we see that the time component of the above
four-vector is equal to −ρ/ε0. Then, the space component has to be equal to −j/ε0c
to make it a four-vector. Therefore,

Ç cF = −j/ε0c, or ∂ν cFµν = −jµ/ε0c,

or in ordinary vector,

∇·E =
ρ

ϵ0
, ∇×cB − 1

c

∂E

∂t
=

j

ε0c
. (2.13)

∇·E = ρ/ϵ0 holds not only for static field but also for E created by moving charge.

2We follow SI units. It will be B instead of cB in Gaussian units. See Ref. [6] for details.
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The Lorentz transformation of E and cB is, according to Eqs. (2.7) and (2.8),

E′ = E∥ + γ
(
E + β × cB

)
⊥, (2.14)

cB′ = cB∥ + γ
(
cB − β ×E

)
⊥. (2.15)

We see symmetry between E and cB in above Lorentz transformation. The Lorentz
transformation remains the same under following substitution.

E → cB, cB → −E,

Therefore, we have another anti-symmetric tensor, which gives the same Lorentz trans-
formation for E and cB. That is

cF̃ = (cB,−E) .

Applying four-gradient Ç to F̃ yields a four-vector.

Ç cF̃ =

(
1

c

∂

∂t
, −∇

)(
cB,−E

)
=

(
−∇·cB,

1

c

∂cB

∂t
+∇×E

)
In S′, we don’t have any ordinary force component that depends on the velocity of the
particle, therefore cB′ = 0. E′ is static, ∇′ ×E′ = 0. Therefore, this vector is zero in
S′. Because the Lorentz transformation is a linear transformation, this vector must be
zero in any inertial frame. Therefore

Ç cF̃ = 0, or ∂ν cF̃µν = 0,

or in ordinary vector,

∇·B = 0, ∇×E +
1

c

∂cB

∂t
= 0. (2.16)

Eqs. (2.13) and (2.16) are the Maxwell’s equations.

3 Concluding Remarks

We assumed following physical properties of electricity.

(a) Charge of the particle is Lorentz invariant. That is q′ = q.

(b) Continuity of charge holds in any inertial frame.

(c) E′ is static. ∇′ ·E′ = ρ′/ϵ0, ∇′ ×E′ = 0, and j′ = (cρ′, 0).

(d) Force f ′ acting on moving charged particle in static electric field E′ is f ′ = qE′.
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(b) can be derived from (a) if we employ following model.

ρ =
∑
i

qi δ
3(r − ri), j =

∑
i

vi qi δ
3(r − ri).

(c) is consequence of Coulomb’s law. (d) as well as Maxwell’s equations derived here
are also subject to verification. Jackson[7] has good review of validity of the theory.
Feynman points out some of fundamental challenges of the theory in his Lectures[5].

Appendix A Vectors and tensors

This report is intended for non-experts. We refrain from using advanced mathematics
such as metric tensor. We follow the notation used in the Feynman’s Lectures[5].

A.1 Vectors

We use following notation for ordinary vectors. We use i, j, k, ... for index x, y, z.

a = ai =
(
ax ay az

)
Below is inner product of ordinary vectors. Summation rule applies.

a · b = aibi = axbx + ayby + azbz

We use following notation for four-vector. We use µ, ν, ρ, ... for index t, x, y, z.

a = (at,a) = aµ =
(
at ax ay az

)
Below is inner product of four-vectors. Summation rule applies.

a · b = (at,a) · (bt, b),
= aµbµ,

= atbt − a · b,
= atbt − axbx − ayby − azbz

A.2 Anti-symmetric tensor

An anti-symmetric tensor is a second-rank tensor whose component flips its sign when
its index order is flipped, like below.

Aµν = −Aµν
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It has six independent components.

Aµν =


0 Atx Aty Atz

Axt 0 Axy Axz

Ayt Ayx 0 Ayz

Azt Azx Azy 0

 =


0 −Axt −Ayt −Azt

Axt 0 −Ayx Axz

Ayt Ayx 0 −Azy

Azt −Axz Azy 0


Let us work on the case when it is written with two four-vectors as below.

Aµν = aµbν − aνbµ

Because any anti-symmetric tensor can be written with a linear combination of these,
extending below discussion to general case is straight forward.

A.2.1 Two ordinary vectors

p = (Axt Ayt Azt) forms an ordinary vector because it is linear combination of two
ordinary vectors (or linear combination of those).

p =
(
Axt Ayt Azt

)
=

(
axbt − atbx aybt − atby azbt − atbz

)
,

=
(
ax ay az

)
bt − at

(
bx by bz

)
,

= a bt − at b

q = (Azy Axz Ayx) forms an ordinary vector too, because it is vector product of two
ordinary vectors (or linear combination of those).

q =
(
Azy Axz Ayx

)
,

=
(
(azby − aybz) (axbz − azbx) (aybx − axby)

)
,

= −a× b

We use (p, q) to represent A.

A = (p, q) = Aµν =


0 −px −py −pz
px 0 −qz qy
py qz 0 −qx
pz −qy qx 0

 (A.1)

When both a and b are polar, p is polar and q is axial.
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A.2.2 Linear map

Giving four-vector w to anti-symmetric tensor A yields a four-vector.

wA = (wt,w) (p, q) = wνAµν

= wtAµt − wxAµx − wyAµy − wzAµz.

t, x, y, z components are, respectively,

wνAtν = wtAtt − wxAtx − wyAty − wzAtz,

= wx px + wy py + wz pz = w · p,
wνAxν = wtAxt − wxAxx − wyAxy − wzAxz,

= wt px + wy qz − wz qy,

wνAyν = wtAyt − wxAyx − wyAyy − wzAyz,

= wt py + wz qx − wx qz,

wνAzν = wtAzt − wxAzx − wyAzy − wzAzz,

= wt pz + wx qy − wy qx.

Therefore
wA = (wt,w) (p, q) = wνAµν = (w · p, wt p+w × q) . (A.2)

A.2.3 Lorentz transformation

Let us use Cartesian coordinate whose x-axis coincides β, i.e., β = (βx 0 0). The
Lorentz transformation of a and b is, respectively,

a′x = γ (ax − βx at) , a′y = ay, a′z = az, a′t = γ (at − βx ax) ,

and
b′x = γ (bx − βx bt) , b′y = by, b′z = bz, b′t = γ (bt − βx bx) .

For p = (Axt Ayt Azt),

p′x = A′
xt = a′xb

′
t − a′tb

′
x,

= γ2 (ax − βx at) (bt − βx bx)− γ2 (at − βx ax) (bx − βx bt) ,

= γ2(1− β2
x) axbt − γ2(1− β2

x) atbx = axbt − atbx

= Axt = px,

p′y = A′
yt = a′yb

′
t − a′tb

′
y,

= γ ay (bt − βx bx)− γ (at − βx ax) by,

= γ (aybt − atby − βx aybx + βx axby)

= γ (Ayt − βxAyx) = γ (py − βx qz) ,

p′z = A′
zt = γ (Azt + βxAxz) = γ (pz + βx qy) .
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Similarly, for q = (Azy Axz Ayx),

q′x = A′
zy = Azy = qx,

q′y = A′
xz = γ (Axz + βxAzt) = γ (qy + βx pz) ,

q′z = A′
yx = γ (Ayx − βxAyt) = γ (qz − βx py) .

To convert these to the vector notation, we need to recover missing terms. For example,
when z component has term βx qy, we need to add −βy qx to make it a vector. Then,

p′
∥ = p∥, p′

⊥ = γ (p+ β × q)⊥ , (A.3)

q′∥ = q∥, q′⊥ = γ (q − β × p)⊥ . (A.4)

The inverse transformation can be obtained by inverting the sign of β.

p∥ = p′
∥, p⊥ = γ

(
p′ − β × q′

)
⊥ , (A.5)

q∥ = q′∥, q⊥ = γ
(
q′ + β × p′)

⊥ . (A.6)

A.2.4 Dual tensor

We see symmetry between p and q in their Lorentz transformation (Eqs. (A.3), (A.4)),
i.e., following substitution will give the same Lorentz transformation.

p → q, q → −p.

Therefore, Ã = (q,−p) gives the same transformation for p and q as A = (p, q).

Ã = (q,−p) = Ãµν =


0 −qx −qy −qz
qx 0 pz −py
qy −pz 0 px
qz py −px 0

 (A.7)

Dual tensor is valid only under “proper” (not inverting) coordinate transformations,
since we are substituting polar vector with axial vector, vice versa.
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