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Abstract

A derivation of Maxwell’s equations is presented. We start with the relativistic
equation of motion and introduce the force tensor R, with which the four-force K,
can be written as K, = u, R, where u, is the four-velocity. We show that if such a
tensor exists it has to be anti-symmetric. Then, we show that the electrostatic force
can be written with such an anti-symmetric tensor and introduce the electromagnetic
tensor [, such that K, = qu,F),. The Lorentz force is derived from the Lorentz
transformation of F},,. The first set of Maxwell’s equations is derived from 9, F},,,. From
the symmetry of the Lorentz transformation of F},,, we introduce dual tensor F, v from
which we derive the second set of Maxwell’s equations. Although we have to introduce
four-vector, the calculation effort required is much less than other approaches, because
we separated velocity out from the four-force by introducing the force-tensor.

1 Introduction

There are a few other drivations widely available. Schwartz[1] begins with Poisson’s
equation and transforms it into a Lorentz covariant form by introducing the vec-
tor potential and compensating missing terms leading to the electromagnetic tensor.
Purcell[2], Elliott[3] and Haskell[4] use Lorentz transformations of electrostatic equa-
tions. Purcell’s treatment is the most pedagogical while Elliott is more straight forward.
Both use ordinary three dimensional vectors. Haskell follows Elliott’s procedure but
uses four-vector notation.
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In this report, we begin with the relativistic equation of motion and introduce force
tensor R, with which the four-force K, can be written as K, = u, RR,,,, where u, is the
four-velocity. We show that if such a tensor exists it must be anti-symmetric. Then, we
demonstrate that the electrostatic force can be written with such an anti-symmetric
tensor and introduce the electromagnetic tensor F},, such that K, = qu,F),. The
Lorentz force is derived from the Lorentz transformation of Fj,. The first set of
Maxwell’s equations is derived from 0, F},,. From the symmetry of the Lorentz trans-
formation of F),,, we introduce the dual tensor F, wv from which we derive the second
set of Maxwell’s equations.

This derivation stands similar position as Schwartz’s but without introducing poten-
tials. It makes it more evident that the Lorentz force and the Lorentz transformation of
fields originates from the force tensor in the Minkowski space. Although we have to in-
troduce four-vector, the calculation effort required is much less than other approaches,
because we separated velocity out from the four-force by introducing the force-tensor.

This report is intended for non-experts. We refrain from using advanced mathemat-
ics such as the metric tensor. We follow the notation used in the Feynman’s Lectures[5],
which is summaried in Appendix A.

2 Derivation

2.1 Reference Frames

We consider two inertial frames S and S’ such that S’ is moving at velocity V relative
to S. We will use v and (8 defined below.

1
N =, 8 =18, B=V/c 2.1
— 8 / 2.1)
We will use these only for relative velocity between inertial frames, not for velocity of
the particle to avoid confusion. The Lorentz transformation of a four-vector (z, )
from S to S’ is given below.

az':wJ_+7(:B||—ﬁxt), v, =7(x,— B -x), (2.2)

where x; and || is normal and parallel component of & with respect to 8, namely,

T
rT=x, +x| x| = '6('[;2) (2.3)
The inverse transformation is obtained by inverting V', thus 3.
x:wl—i—’y(az’“—i—,@x;), v =7 (z,+ 8- ). (2.4)
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2.2 Force Tensor

Let us begin with the relativistic equation of motion of a particle whose mass and
coordinate are m and (ct, r), respectively.

du
2 & _

e

where u,, is the four-velocity of the particle.

b d(ct,r) _ (cdt,dr) 1 (1 v). (25)
a ds cdt\/1—(v/c)2  /1—(v/c)2\ ¢

K, is the four-force acting on the particle.

1 v
K:K:7y(—-ﬁ f) 2.6
Suppose that we can express four-force K, by four-velocity u, and a tensor R,,,

like below.
2 duy

ds
If such R, exits, it must be anti-symmetric. The explanation follows.

m =K,=uR,

Taking inner product with u, yields

du
2 ro_
mc uu—ds = uyuy Ry

The left hand side is zero, because u,u, = 1.

2
o duy,  met duyuy,

p— pr— 0
me-tp ds 2 ds

Therefore, u,u, R, must be zero which means R/, has to be anti-symmetric.!

We get Eq. (2.6) with R= R, = (f, 0).

uR = (ut, u) (f, 0),

o (5T

where we used Eqgs. (A.2) and (2.5).

=K,

1See Appendix A.2 for more about anti-symmetric tensors.



In case R = (p, q),

K=uR=(u, u)(p,q) = (u-p, up+tuxq)),
g e PPT M)

Therefore,

v

f=p+—xq.
c
In case both p and g does not depend of v, the Lorentz transformation of R = (p, q)

will be, from Eqs. (A.3) and (A.4),
p=p +(+Bxq), (2.7)
/

qd =q +v(q-Bxp),

The inverse transformation of above is obtained by changing the sign of 3.

p=0p +0-8xd),, (2.9)
g =4q) +(d+8xp),. (2.10)

2.3 Maxwell’s Equations

We assume continuity of charge holds in any inertial frame,

ap

V=0
8t+ J )

where p and j are charge density and current density, respectively. This leads to p and
J forming a four-vector j = (cp, ), because this continuity equation can be viewed as
the inner product of the four-gradient and the four-current is zero, or a scalar.

Suppose that all the charge is at rest in ', i.e., ' = 0.

!

= (cp', j'), i =0. (2.11)
Static charge density p’ creates static electric field E’.
V' -E' =/p/ey, V' XE =0 (2.12)

Let us consider motion of a charged particle whose charge ¢ is very small so that
its motion will not affect the rest of charges and thus the charge density. We assume
q is Lorentz invariant, i.e., ¢ = q. The force acting on the charged particle f’ is

fl — qE/
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Since E’ does not depend on the velocity v of the particle, we can use the force tensor.
K' = q (u;a ’U/)(E,, O)

In S, all charges except for ¢ are moving uniformly at V', four-force K is, according to
Egs. (2.9) and (2.10),

K=q(u,u)(E| + VE', B xE).
This gives
f =9qlE, +yE + BX(BXWE’) .
I c

" +~vE')) is electric field in S and (3 x vE’) can be interpreted as magnetic field.

I L

Now, we define the electromagnetic tensor F as below.?

cF = (E, ¢B)
Giving four-velocity of the particle u to F yields four-force K.
qgucF =K=¢q(u,u) (E,cB)=¢q(u-E, wE+u X cB),

:q<”-E, E+”ch>
C

VI—(@/eP \e

Applying the four-gradient d to F yields a four-vector.

10 10F
OckF = (cat’ —V> (EaCB) = <_V'E7 ot VXCB)

Recalling that V' - E' = p//ep in S’, we see that the time component of the above
four-vector is equal to —p/eg. Then, the space component has to be equal to —j/epc
to make it a four-vector. Therefore,

OCF = —j/zoc, or BycFu = —jufeuc

or in ordinary vector,
vE=L  vxB--Z =1, (2.13)
€0

V-E = p/ey holds not only for static field but also for E created by moving charge.

ZWe follow SI units. It will be B instead of ¢B in Gaussian units. See Ref. [6] for details.



The Lorentz transformation of E and ¢B is, according to Egs. (2.7) and (2.8),

E' = E| + v(E+BxcB),, (2.14)
¢B" = ¢B| + (cB -0 x E)J_. (2.15)

We see symmetry between E and ¢B in above Lorentz transformation. The Lorentz
transformation remains the same under following substitution.

E — ¢B, cB —» —F,

Therefore, we have another anti-symmetric tensor, which gives the same Lorentz trans-
formation for E and c¢B. That is

cF = (cB,-E).

Applying four-gradient 8 to F yields a four-vector.

. /1 19cB
acF:< 9 V> (cB,—E)=<—V-cB, 10¢ —|—V><E>

cot’ c Ot

In S/, we don’t have any ordinary force component that depends on the velocity of the
particle, therefore cB’ = 0. E' is static, V' x E’ = 0. Therefore, this vector is zero in
S’. Because the Lorentz transformation is a linear transformation, this vector must be
zero in any inertial frame. Therefore

dcF = 0, or 0, CFW =0,

or in ordinary vector,

v.B—0 vxE4. 2B
c Ot

Egs. (2.13) and (2.16) are the Maxwell’s equations.

= 0. (2.16)

3 Concluding Remarks

We assumed following physical properties of electricity.

)

b)

(c) E'is static. V' -E =p'/eg, V' x E'=0, and J/ = (¢p/,0).

(d) Force f’ acting on moving charged particle in static electric field E' is f' = qE’.

(a) Charge of the particle is Lorentz invariant. That is ¢’ = q.
(

Continuity of charge holds in any inertial frame.
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(b) can be derived from (a) if we employ following model.
p=>_adr—mr),  F=) vigd(r—r).

(c) is consequence of Coulomb’s law. (d) as well as Maxwell’s equations derived here
are also subject to verification. Jackson[7] has good review of validity of the theory.
Feynman points out some of fundamental challenges of the theory in his Lectures[5].

Appendix A Vectors and tensors

This report is intended for non-experts. We refrain from using advanced mathematics
such as metric tensor. We follow the notation used in the Feynman’s Lectures[5].

A.1 Vectors

We use following notation for ordinary vectors. We use i, j, k, ... for index x, y, z.
a=a; = (ax ay az)
Below is inner product of ordinary vectors. Summation rule applies.
a-b=a;b; =a.b; +ayb, +a.b,
We use following notation for four-vector. We use p, v, p, ... for index ¢, z, y, z.
a=(a,a)=a,= (at ay ay az)
Below is inner product of four-vectors. Summation rule applies.

a-b= (at,a) . (bt,b),
= a,by,,
= atbt —a- b,

= atby — azby — ayby — a.b,

A.2 Anti-symmetric tensor

An anti-symmetric tensor is a second-rank tensor whose component flips its sign when
its index order is flipped, like below.

A = —Au



It has six independent components.

0 Atm Aty Atz 0 _Azt _Ayt _Azt
A _ Aa:t 0 A:cy Aacz _ Aact 0 _Ay;t Aa:z
W Ay Ay 0 Ay Ay Ap 0 —A,
Azt Azz Azy 0 Azt _sz Azy 0

Let us work on the case when it is written with two four-vectors as below.
Ay = aub, —ayby,

Because any anti-symmetric tensor can be written with a linear combination of these,
extending below discussion to general case is straight forward.

A.2.1 Two ordinary vectors

p = (Az Ay A) forms an ordinary vector because it is linear combination of two
ordinary vectors (or linear combination of those).

b= (Axt Ayt Azt)
= (axbt —aiby  ayby —atby a by — atbz) ,
= (az ay az) by — ay (bm by bz) ,
=ab—a; b

qg = (A, Ay Ay,) forms an ordinary vector too, because it is vector product of two
ordinary vectors (or linear combination of those).

q= (Azy Ay Ayz) ’
= ((azby —ayby) (azb, —azby) (ayby — amby)) ,
=—axb

We use (p, q) to represent A.

0 —pg —Dy —DPz

Pz 0 —q. q
A=(p,q)=A4, = Y Al
e (A1)

Dz —Qy Qx 0

When both a and b are polar, p is polar and g is axial.



A.2.2 Linear map
Giving four-vector w to anti-symmetric tensor A yields a four-vector.
WA = (wta 'lU) (pa q) = wl/A,uZ/
= wi At — WeAup — WyAuy — w2 A,
t, x, y, z components are, respectively,
wy Ay = WAy — WAy — wyAty —w, Az,
= Wg Py + Wy Py + W P, =W P,
Wy Azy = WAzt — WpAyy — wyAzy — Wy Az,
= Wt Pg + Wy Gz — Wz Gy,
Wy Ay, = WAy — W Ayy — wyAyy —w, Ay,
= WPy + Wz Gz — Wz Gz,
wy AL, = wiAz — we ALy — wyAzy —w,A,
= W¢ Py + Wy Gy — Wy G-

Therefore
WA = (wy, w) (p,q) = w, A = (W-p, wip+w X q). (A.2)

A.2.3 Lorentz transformation

Let us use Cartesian coordinate whose x-axis coincides 3, i.e., B = (8, 00). The
Lorentz transformation of a and b is, respectively,
ay =7 (tz — Boar), ay=ay, da, =a;, a=7(a—PFras),
and
by = (be = Bobs), by =by, . =b., b =7(bt—frba).
For p = (Aut Ayt Aze),
P = Ay = apbi — ajll,
= 72 (az — By ar) (b — By by) — 72 (at — By az) (by — Bz br)
= ’72(1 - 53) azby — ’72(1 - 55) athy = azby — aiby
= Azt = Pa,
p;/ = A’yt = a’ybé — a;b’y,
=y ay (bt — Baba) — 7 (ar — Bz az) by,
=7 (aybs — atby — By ayby + By azby)
=7 (Ayt — Br Aya) =7 (py — Bz az),
P, =AL =7 (At + Be Asz) =7 (p2 + Ba qy) -



Similarly, for ¢ = (A, Az Aye),

q/m - A/zy = Azy = {z,
Gy = AL, =7 (Azz + Ba Ast) = 7y (qy + Bap2)
q; = Afgx =7 (Ay;c - /Bx Ayt) =7 (QZ - ﬂxpy) .

To convert these to the vector notation, we need to recover missing terms. For example,
when z component has term 3, ¢,, we need to add —f, g, to make it a vector. Then,

pi=p, PL=7P+Bxaq),, (A.3)

g =ap. dL=7@-Bxp),. (A.4)
The inverse transformation can be obtained by inverting the sign of 3.

P =p), pL=70p -Bxd),. (A.5)

q =g a.=7(@+8xp), . (A.6)

A.2.4 Dual tensor

We see symmetry between p and g in their Lorentz transformation (Egs. (A.3), (A.4)),
i.e., following substitution will give the same Lorentz transformation.

P —9 q — —p.
Therefore, A = (g, —p) gives the same transformation for p and q as A = (p, q).
0 —¢ -4 —¢
A=(q-p)=dn= |00 O F (A7)
& Dpy Dbz O

Dual tensor is valid only under “proper” (not inverting) coordinate transformations,
since we are substituting polar vector with axial vector, vice versa.
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