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Abstract

An introduction to small signal analysis.
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1 Linear Response

In a linear system, the relation between input and output is linear, which means it
satisfies the principle of superposition. Suppose that if such system is given an input
of x1(t), it gives output of y1(t), and that input x2(t) gives output y2(t), then the
output will be a y1(t)+ b y2(t) if input a x1(t)+ b x2(t) is given. Let’s say F{·} denotes
relation between input and output of the system:

y1(t) = F {x1(t)} , y2(t) = F {x2(t)} .

When the system is linear

F {a x1(t) + b x2(t)} = F {a x1(t)}+ F {b x2(t)} = a y1(t) + b y2(t),

where a and b are arbitrary constants.

1.1 Impulse response and frequency response

Let’s decompose x(t) into sum of impulses:

x(t) =
∫ ∞

−∞
x(τ) δ(t− τ) dτ,

and put it into y(t) = F{x(t)}:

y(t) = F

{∫ ∞

−∞
x(τ)δ(t− τ) dτ

}
.

Since the integral is nothing but sum of running parameter τ , we can bring F into the
integral:

y(t) =
∫ ∞

−∞
F {x(τ)δ(t− τ)} dτ,

and x(τ) is just a parameterized coefficient, it can be brought out from F :

y(t) =
∫ ∞

−∞
x(τ) F {δ(t− τ)} dτ,

Exchanging the order of multiplication and using h(t) for impulse response F {δ(t)},
we see h(t− τ) is contribution weight of input at time τ to the output at time t:

y(t) =
∫ ∞

−∞
h(t− τ) x(τ) dτ.
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The system will not react before the impulse is given, therefore h(t) = 0 for t < 0, it
should be enough to take integral up to t for y(t):

y(t) =
∫ t

−∞
h(t− τ) x(τ) dτ. (1)

Now we would like to take a look at frequency response of the system. Output y(t) for
complex sine wave input, x(t) = xω eiωt will be

y(t) =
∫ t

−∞
h(t− τ) xω eiωτ dτ.

With a new variable τ ′ = t − τ , (τ = t − τ ′, dτ = −dτ ′), we can get rid of t from the
interval:

y(t) = −
∫ 0

∞
h(τ ′) xω eiω(t−τ ′) dτ ′,

and the integrand:

y(t) = xω eiωt

∫ ∞

0
h(τ) e−iωτ dτ.

Since h(τ) = 0 for τ < 0, we can extend the interval from −∞:

y(t) = xω eiωt

∫ ∞

−∞
h(τ) e−iωτ dτ.

The integral is constant (does not depend on t), i.e., sine wave input gives sine wave
output of the same frequency, which is anticipated result from a linear system. If we
write y(t) = yω eiωt, we see frequency response is Fourier transform of impulse response.

H(iω) =
yω

xω
=

∫ ∞

−∞
h(τ) e−iωτ dτ

Therefore inverse transform of frequency response will give impulse response:

h(τ) =
1
2π

∫ ∞

−∞
H(iω) eiωτ dω.

Since h(τ) = 0 for τ < 0, there will be corresponding condition for a complex function
H(iω) to be a frequency response function. We will come back to this condition later
when we study H(s) as a solution of circuit equation. However, we will see the reason
why we write H(iω), not H(ω) in the next section.

3



1.2 Impulse response and Laplace transform

We have just learnt that frequency response is Fourier transform of impulse response:

H(iω) =
∫ ∞

−∞
h(τ) e−iωτ dτ =

∫ ∞

0
h(τ) e−iωτ dτ.

If we substitute iω by a complex variable s, we get Laplace transform:

H(s) =
∫ ∞

0
h(τ) e−sτ dτ.

Inverse transform will be

h(τ) =
1
2π

∫ ∞

−∞
H(iω) eiωτ dω =

1
2πi

∫ +i∞

−i∞
H(s) esτ ds.

Since h(τ) is a real function there are following relations between H(s) and its complex
conjugate.

H(s)∗ = H(s∗) or H(−iω) = H(iω)∗

We use L{·} and L−1{·} to denote Laplace transform and its inverse transform:

H(s) = L{h(t)} , h(t) = L−1 {H(s)} .

This is just a short hand for the integral form. The reason why we introduce a special
symbol is that we rarely evaluate integrals in practical calculations, but just look up
Appendix B instead.

Impedance, admittance and transfer function When H(s) represents re-
sponse of voltage to current, we call it impedance or impedance function. When H(s)
represents response of current to voltage, we call it admittance or admittance func-
tion. When H(s) represents response of the same kind of quantity as input, we call it
transfer function. For impedances we use Z(s) instead of H(s) to make dimensions of
quantities clear. Similarly we use Y (s) for admittance. To summarize, we use following
names and symbols

Transfer function H(s), impedance Z(s), admittance Y (s),

for response functions. Those are

H(s) = Laplace transform of impulse response, transfer function,

Z(s) = H(s) when it represents voltage response to current,
Y (s) = H(s) when it represents current response to voltage,
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or

H(s) = L{h(t)} =
∫ ∞

0
h(τ) e−sτ dτ,

Z(s) = L{z(t)} =
∫ ∞

0
z(τ) e−sτ dτ,

Y (s) = L{y(t)} =
∫ ∞

0
y(τ) e−sτ dτ,

where h(t), z(t) and y(t) is impulse response:

xout(t) =
∫ t

−∞
h(t− τ) xin(τ) dτ,

v(t) =
∫ t

−∞
z(t− τ) i(τ) dτ,

i(t) =
∫ t

−∞
y(t− τ) v(τ) dτ.

Here I used xout and xin because we want to use y(t) for impulse response of voltage
to current.

From convolution theorem, we have

Xout(s) = H(s) Xin(s), V (s) = Z(s) I(s), I(s) = Y (s) V (s),

where
Xout(s) = L{xout(t)}, V (s) = L{v(t)} I(s) = L{i(t)}.

Z(s) has dimension of resistance, Y (s) has dimension of conductance, and H(s) is
dimensionless. Substituting s by iω in response functions gives frequency responses:

vω = Z(iω) iω, iω = Y (iω) vω,

where v(t) = vωeiωt and i(t) = iωeiωt, respectively.
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1.3 Response functions of circuit elements

Consider a two terminal circuit element such as resistor R, capacitor C or inductor
L. If we apply voltage v(t) across the terminal, current will flow. Such current is
regarded as response to input v(t). Let’s take a look at frequency response of these
circuit elements to get corresponding response functions.

First, resistor. I-V relation of a resistor R is

i(t) =
1
R

v(t) or v(t) = R i(t).

It is trivial that frequency response function is

Y (iω) = 1/R, Z(iω) = R.

Next, capacitor. I-V relation of a capacitor C is

i(t) = C
dv(t)
dt

or v(t) =
1
C

∫ t

i(t) dt.

Inserting v(t) = vωeiωt and i(t) = iωeiωt yields

Y (iω) = iω/vω = iωC, Z(iω) = vω/iω =
1

iωC
.

Similarly for inductor L,

Y (iω) =
1

iωL
, Z(iω) = iωL.

Therefore, by substituting iω with s, response functions of resistor, capacitor and
inductor is given as follows.

Z(s) Y (s)

Resistor R
1
R

Capacitor 1
sC sC

Inductor sL
1
sL
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1.4 Composition of impedance and admittance

When we have two impedances Z1 and Z2 in series, both share the same amount of
current i(t). Voltage across these two will be, in s-space,

V (s) = V1(s) + V2(s) = (Z1(s) + Z2(s)) I(s) = Z(s) I(s),

where V1(s), V2(s) and Z(s) is Laplace transform voltage across Z1, Z2 and the com-
pound impedance function, respectively. Therefore

Z(s) = V (s)/I(s) = Z1(s) + Z2(s).

Similarly, when we have two admittances Y1(s) and Y2(s) in parallel, both share the
same amount of voltage v(t). Total current I(s) will be sum of two currents

I(s) = I1(s) + I2(s) = (Y1(s) + Y2(s))V (s).

Therefore compound admittance:

Y (s) = I(s)/V (s) = Y1(s) + Y2(s).

Example: Compound resistance and capacitance In case two resistors R1

and R2 connected in series, compound impedance R will be

R = R1 + R2,

and for parallel connection admittance will be

1
R

=
1

R1
+

1
R2

.

Since impedance of resistor is inverse of its admittance, the compound impedance R
for parallel connection,

R =
1

1/R1 + 1/R2
.

Similarly, for a series connection of two capacitors,

1
sC

=
1

sC1
+

1
sC2

.

It behave as if it is a capacitor of capacitance of

C =
1

1/C1 + 1/C2
.

In case of two capacitors in parallel, it behaves as if its capacitance is the sum of two:

C = C1 + C2.

These are consistent with the results obtained from electrostatics.
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1.5 AC power

Let’s use a rule to convert complex sine wave to real sine wave like below:

v(t) =
1√
2

vω eiωt + c.c., i(t) =
1√
2

iω eiωt + c.c.,

where c.c. is complex conjugate of the first term. Suppose that these represent two
terminal current and voltage, the average power over a period T = 2π/ω will be

P =
1
T

∫ T

0
v(t) i(t) dt =

1
2

(v∗ω iω + vω i∗ω) = Re( v∗ω iω ) .

Recalling that
V (s) = Z(s) I(s), I(s) = Y (s) V (s),

and that substituting s in a response function by iω gives frequency response:

vω = Z(iω) iω, iω = Y (iω) vω,

power injected into the system is written with its impedance Z(s) or admittance Y (s),
as follows.

P =
1
2

(Z∗(iω) i∗ω iω + Z(iω) iω i∗ω) = Re Z(iω) |iω|2 (by current source)

P =
1
2

(v∗ω Y (iω) vω + vωY ∗(iω) v∗ω) = Re Y (iω) |vω|2 (by voltage source)

With this rule, |vω| and |iω| is rms value of v(t) and i(t), respectively.〈
v2

〉
= |vω|2,

〈
i2

〉
= |iω|2.

Note that proportionality coefficient is real part of frequency response function. From
now on, we will use this rule unless otherwise noted.

1.6 Example: RLC resonator

Let’s take a look at RLC resonator as an example of compound response function.

R L C

Impedance:

Z(s) = R + sL +
1

sC
= R · 1 + sRC + s2LC

sRC
= R · (1 + s τ⊕)(1 + s τ	)

s τ3
,

where

τ⊕ + τ	 = RC, τ⊕τ	 = LC, τ3 = RC,

1/τ⊕,	 = λ±
√

λ2 − ω2
0, λ = R/2L, ω2

0 = 1/LC.
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1.6.1 Frequency response

Impedance:

Z(iω) = R + i
ω2LC − 1

ωC
.

Inductor and capacitor become transparent at ω = ω0.
Admittance:

Y (iω) =
1

Z(iω)
=

1
R
·

i
ω

ω0
· 2λ

ω0

1−
(

ω

ω0

)2

+ i
ω

ω0
· 2λ

ω0

=
1
R
· iB

A + iB
= Y ′ + i Y ′′,

where we have defined real quantities A, B, Y ′ and Y ′′

(Just for short hand). If we notice,

R Y (iω) =
iB

A + iB
=

B2 + iAB

A2 + B2
= x + i y,

we see that R Y (iω) is on a circle of diameter 1 in
complex plane as shown in the right. Because x and y
satisfy following equation.

(x− 1/2)2 + y2 = 1/4

Re

Im

O 1
2R

ω = ω0

1
R

Y (iω)
ω < ω0

ω > ω0

We can easily get some idea of relation between amplitude and phase from this circle.
In case ω = −∞, Y (iω) is at the origin. It moves clock wise as ω increases, and goes
back to the origin at ω = ∞. Re Y (iω) is maximum at ω = ω0, i.e., if we place an AC
voltage source (electromotive force) between two terminals of this resonator and make
it a circuit, energy transfer from the voltage source to the resonator is maximum at
ω0. Below plots show real and imaginary part (left) and amplitude and phase (right).
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We will see a few more thing about frequency response of RLC resonator in Sec-
tion 1.10.4.
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Q-factor Recalling that the mean square of current is the square of the absolute
value of frequency component (complex current), average power being injected into
the resonator P is written with complex current iω as

P = Re Z(iω)
〈
i2

〉
= R |iω|2.

In steady state, injected power is dissipated through the resistor. How about the
inductor and the capacitor? What they do? They keep energy according to LI2/2 and
CV 2/2. Average energy Ē stored in L and C is sum of those:

Ē =
1
2
L

〈
i2

〉
+

1
2
C

〈
v2

〉
,

where
〈
v2

〉
is mean square voltage across the capacitor. Recalling that

〈
v2

〉
= |vω|2

and that

vω =
iω

iωC
→ |vω|2 =

|iω|2

ω2C2
,

average energy stored in L and C:

Ē =
1
2
L |iω|2 +

1
2
C
|iω|2

ω2C2
=

1
2

(
ω2LC + 1

ω2C

)
|iω|2.

This amount of energy is injected at initial transient. (See Section 1.6.3) The ratio
of the average energy stored and the average energy dissipated over a period of 1/ω is
called Q-factor:

Q(ω) =
Ē

P · 1/ω
=

ω2 + ω2
0

4ωλ
.

Q0 is defined at ω = ω0:

Q0 = Q(ω0) =
ω0

2λ
or ω0

L

R
.

Half-height width In case λ is small compared to ω0, |Y (iω)| has sharp peak at
ω0. Y (iω) around ω0 can be approximately written with ε = ω − ω0 as

Y (iω) = − 1
R
· iλ

ε− iλ
,

by dropping second order small quantities (coefficient of ε2). Its square absolute value

|Y (iω)|2 =
1

R2
· λ2

λ2 + ε2

gets half of its peak value at ε = ±λ. 2λ = ω0/Q0 is called half-height width or full
width at half maximum (FWHM).
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1.6.2 Step input

Suppose that DC voltage source V0 is turned on at t = 0, i.e., v(t) is a step function.
Laplace transform of voltage across resonator will be V0/s. Recalling that admittance

Y (s) =
1

Z(s)
=

1
R
· s τ3

(1 + s τ⊕)(1 + s τ	)
,

Laplace transform of current

I(s) = Y (s) V (s) =
1
R
· s τ3

(1 + s τ⊕)(1 + s τ	)
· V0

s
,

=
V0 τ3

R
· 1
(1 + s τ⊕)(1 + s τ	)

,

(By looking up Appendix B, we find)

=
V0 τ3

R
· 1
τ⊕ − τ	

(
τ⊕

1 + s τ⊕
− τ	

1 + s τ	

)
.

If we notice,
1

τ⊕ − τ	
=

1/(τ⊕ τ	)
1/τ	 − 1/τ⊕

=
1

LC
· i

2 ω0

√
1− (λ/ω0)2

,

above become

I(s) =
V0

L
· i

2 ω0

√
1− (λ/ω0)2

(
τ⊕

1 + s τ⊕
− τ	

1 + s τ	

)
.

Here i is imaginary unit (not current). Taking inverse Laplace transform yields current
i(t) as a function of time:

i(t) = L−1 {I(s)} =
V0

L
· i

2 ω0

√
1− (λ/ω0)2

(
e−t/τ⊕ − e−t/τ	

)
.

In case τ⊕,	 is real, i.e., λ > ω0,
we see overshooting. Otherwise we
see decaying oscillation of frequency
ω′ which is slightly lower than ω0.
Recalling that 1/τ⊕,	 = λ ± iω′0,

i(t) =
V0

ω′0L
· e−λt sinω′0t,

ω′0 = ω0

√
1− (λ/ω0)2.

Wave forms are shown in the right.
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1.6.3 Sine input

Let’s apply sine wave input v(t) = a eiωt starting from t = 0. Laplace transform of
such function is

V (s) = L{a e−t/τ} =
a τ

1 + sτ
, where − 1/τ = iω.

Current will be

I(s) = Y (s) V (s),

=
1
R

s τ3

(1 + s τ⊕)(1 + s τ	)
· a τ

1 + s τ
.

In the end, we want inverse transform of I(s). Our jobs is to rewrite I(s) in a way
we can find L−1{I(s)} easily. (Just as we did in the previous section.) By looking up
Appendix B, we find

I(s) = − a

R
· τ3

τ⊕ − τ	

[
τ

τ⊕ − τ

(
τ⊕

1 + s τ⊕
− τ

1 + s τ

)
− τ

τ	 − τ

(
τ	

1 + s τ	
− τ

1 + s τ

)]
. (2)

Let’s focus on coefficient of L{eiωt} = τ/(1 + sτ), above becomes

I(s) =
a

R
· −τ3/τ

(1− τ⊕/τ)(1− τ	/τ)
· τ

1 + s τ

+
a

R
· τ3

τ⊕ − τ	

(
1

1− τ⊕/τ
· τ⊕
1− s τ⊕

− 1
1− τ	/τ

· τ	
1− s τ	

)
.

Inserting −1/τ = iω and taking inverse transform yields

L−1 {I(s)} =
a

R
· iω τ3

(1 + iω τ⊕)(1 + iω τ	)
· eiωt

+
a

R
· τ3

τ⊕ − τ	

(
1

1 + iω τ⊕
· e−t/τ⊕ − 1

1 + iω τ	
· e−t/τ	

)
. (3)

Recalling that 1/τ⊕,	 = λ ± iω′0 and that λ = R/2L > 0, the last two terms vanish as
t goes larger. Therefore we get anticipated result from frequency response.

L−1 {I(s)} ∼ Y (iω) a eiωt. (for large t)

The vanishing two terms are used to charge energy into L and C.
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Now let us take a look at behavior for smaller t. Taking inverse transform of Eq. (2)
yields

L−1 {I(s)} = − a

R
· τ3

τ⊕ − τ	

[
1/τ⊕

1/τ⊕ + iω

(
eiωt − e−t/τ⊕

)
− 1/τ	

1/τ	 + iω

(
eiωt − e−t/τ	

)]
.

We see there’s no current at t = 0.
Inserting 1/τ⊕,	 = λ ± iω′0, τ3 = RC, and bringing eiωt out of the bracket, we get

L−1 {I(s)} =
a eiωt

2iω′0L

[
λ + iω′0

λ + i(ω + ω′0)

(
1− e−(λ+i(ω+ω′0))t

)
− λ− iω′0

λ + i(ω − ω′0)

(
1− e−(λ+i(ω−ω′0))t

)]
.

Let us assume λ � ω0 where ω′0 is very close to ω0 and current decays much slower
than its ringing period of 1/ω′0. In case when input frequency ω is close to ω0, the
first term vibrates very rapidly but coefficient is small compared to the second term.
Overall behavior is determined by the second term, which is moving very slowly:

L−1 {I(s)} =
a eiωt

2iω0L
· λ− iω0

λ + i(ω − ω0)

(
1− e−(λ+i(ω−ω0))t

)
. (4)

Coefficient of a eiωt is envelope of the wave.
If we take λ → 0,

L−1 {I(s)} =
a eiωt

2i(ω − ω0)L

(
1− ei(ω0−ω)t

)
.

This is beat. Peak amplitude grows as input frequency ω getting closer to ω0, and
period of the envelope is getting longer.

For smaller t, where λ + i(ω − ω0)t � 1, using ex ∼ 1 + x for x � 1, we get

L−1 {I(s)} =
a eiωt

2L
· iω0 − λ

iω0
· t,

=
t

2L
· a eiωt. (λ → 0)

Envelope grows linearly at the beginning. Figure 1 shows a few example.

Real solutions are obtained by adding complex conjugate, like shown in Section 1.5.
Once real solution is obtained it may be interesting to see power transfer from voltage
source to this resonator or energy stored in C and L as a function of t.
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Figure 1: Current response of RLC driven by sine wave aeiωt (real part of Eq. (4)) with
L = 1.0, a = 1.0, ω0 = 0.98, ω = 1.0. (top) λ = 0.1, (mid) λ = 0.01, (bot) λ = 0.0001. Note
in this plot L is fixed. This means R is reduced to make λ smaller resulting larger swing.
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1.7 Circuit equations

1.7.1 Node equation

Sum of currents going out from a node is zero:

i1(t) + i2(t) + ... + iN (t) = 0.

From the linearity of Laplace transform:

L{i1(t) + i2(t)} = L{i1(t)}+ L{i2(t)},

equation for in(t) become, in s space,

I1(s) + I2(s) + ... + IN (s) = 0.

where In(s) = L{in(t)}. We use in to represent both In(s) and in(t).

Suppose a network like in the right. Current for each
branch

In(s) = Yn(s) (vx − vn) .

From the current conservation law,
∑

n In = 0, we get

v1

Y1 vx
Y2

Y3

v2

v3

∑
n

Yn(s) (vx − vn) = 0

If we inject current ix into node vx, current conserva-
tion equation will be∑

n

Yn(s) (vx − vn) = ix.

v1

Y1
vx

Y2

Y3

v2

v3

ix

1.7.2 Circuit matrix

Consider a circuit network of N nodes and we inject current i1 to node 1. Resulting
node voltages Vi will be proportional to i1,

vi = zi1 i1,

where zi1 is response function of vi to i1. Similarly, if we inject currents ii to each
node, resulting node voltages vi will be linear combination of these:

vi =
N∑

i=1

zij ij .
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We would like to find matrix (z) of which ij element is zij . Fortunately, inverse of (z)
can be found by node equation as follows. Using (y) = (z)−1, above equation become

ii =
N∑

i=1

yij vj , (y) = (z)−1.

Let’s say Yij is admittance between node i and j. If i and j is not connected, Yij = 0.
Node equation will be

ii = Yi0 vi +
∑
j 6=i

Yij (vi − vj),

where Yi0 is admittance to the ground. Therefore, diagonal and other elements of
matrix (y) are, respectively,

yii = Yi0 vi +
∑
j 6=i

Yij , yij = −Yij .

Since matrix (Y ) is symmetric (Yij = Yji), matrix (y) is also symmetric. Matrix (z)
can be found by calculating inverse matrix of (y). Once we find (z), impedance at node
1 will be z11, and i1 = v1/z11. Transfer function from node 1 to node x will be

vx = zx1 i1 =
zx1

z11
v1 → vx/v1 =

zx1

z11
.

Recalling cramer’s rule, zij = adj(y)ij/det(y), we find vx/v1 = adj(y)x1/adj(y)11.
Let’s take a look at RC low pass filter shown in the next section and rename vi to

v1 and vo to v2. Admittance between nodes will be

Y10 = 0, Y12 = Y21 = 1/R, Y20 = sC.

Therefore matrix elements

y11 = Y10 + Y12 = 0 + 1/R = 1/R,

y12 = y21 = −Y12 = −1/R,

y22 = Y20 + Y21 = sC + 1/R,

and matrix

(y) =
(

1/R −1/R
−1/R 1/R + sC

)
=

1
R

(
1 −1
−1 1 + sRC

)
.

Transfer function
vo/vi = v2/v1 =

adj(y)21
adj(y)11

=
1

1 + sRC
.

This method is suitable when we want to study general properties of response functions
or when you want to write a computer program to convert a netlist to circuit matrix
(y) and find its solution (z). However, we would rather solve node equations than
calculate adjugate, when we analyze a specific circuit. (Because it’s usually easier, like
shown in the next section.)
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1.8 Example: RC low-pass filter

Let’s take a look at RC low-pass filter as an example of
circuit equation. Equation for node vo is

1
R

(vo − vi) + sC vo = 0.

vi

R
vo

C

Therefore transfer function

H(s) = vo/vi =
1

1 + s τ
, τ = RC.

1.8.1 Frequency response

If we decompose frequency response function H(iω) into real and imaginary part:

H(iω) =
1

1 + iω τ
=

1
1 + ω2τ2

+ i
−ω τ

1 + ω2τ2
= x + i y

we see that H(iω) is on a circle of

(x− 1/2)2 + y2 = 1/4,

just like admittance of RLC resonator. But this time,
H(iω) makes only half circle like shown in the right.
If we write H(iω) in polar form like this:

H(iω) = |H(iω)| eiφ

Re

Im

O
ω = 0

H(iω)

ω = 1/τ

magnitude and phase is, respectively,

|H(iω)| =
√

x2 + y2 =
1√

1 + ω2τ2
and φ = tan−1 y/x = − tan−1 ωτ.

In case ω � 1/τ ,

H(iω) =
1√

1 + ω2τ2
∼ 1− 1

2
· (ωτ)2 ∼ 1, φ ∼ −ωτ,

((ωτ)2 is second order small quantity) therefore response to sine wave,

H(iω) eiωt = |H(iω)| eiφ · eiωt ∼ eiω(t−τ).

Output follows input with time delay of τ .
In case ω � 1/τ , φ ∼ π/2, and in case ω = 1/τ , φ = π/4 and |H(iω)| = 1/

√
2.

Figure 2 shows waveform of these cases.
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 0  15.708  31.4159  47.1239  62.8319  78.5398  94.2478

[V
]

RELATIVE TIME: t/RC

Out
In
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 1

 0  1.5708  3.14159  4.71239  6.28319  7.85398  9.42478
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]

RELATIVE TIME: t/RC

Out
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Figure 2: Input and output waveform of RC low-pass filter for a few input frequency. In =
1.0V × sin ωt. top) ω = 0.1/τ , mid) ω = 1.0/τ , bot) ω = 10/τ , where τ = RC. For low
input frequencies where ω � 1/τ , output follows input with constant delay of τ in time. For
high frequencies where ω � 1/τ , phase delay is π/2 or 90◦, not sensitive to the frequency.
The output waveform (red) of the bottom is scaled up by 4, to make phase relation clearer.
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1.8.2 Sine input

Recalling that
L{e−t/τ} =

τ

1 + sτ
,

Laplace transform of complex sine wave a eiωt will be

vi = L{a eiωt} =
a/(−iω)

1 + s/(−iω)
.

Therefore response of output vo to sine wave input vi:

vo = H(s) · vi =
1

1 + sτ
· a/(−iω)
1 + s/(−iω)

,

=
a

−iω
· 1
1 + sτ

· 1
1 + s/(−iω)

,

=
a

−iω
· 1
τ − 1/(−iω)

(
τ

1 + sτ
− 1/(−iω)

1 + s/(−iω)

)
,

=
a

1 + iω τ

(
1/(−iω)

1 + s/(−iω)
− τ

1 + sτ

)
.

In t space, this is

vo(t) = L{H(s) · vi} =
a

1 + iωτ

(
eiωt − e−t/τ

)
.

The second term represents transient of input from static zero to sine wave at t = 0. For
t � τ , the second term vanishes and we get something anticipated from the frequency
response:

1
1 + iωτ

· a eiωt.
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Out
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These are input and output wave forms for cosine and sine input, for example. Dis-
continuity of cosine input at t = 0 results discontinuity of derivative of the output.
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1.8.3 Step input

Let’s take a look at response to step input vi(t):

vi(t) = 0, (t < 0)
= V0. (t > 0)

The Laplace transform of vi(t) is V0/s. Therefore output will be

vo = H(s) · V0

s
=

V0

s
· 1
1 + sτ

= V0

(
1
s
− τ

1 + sτ

)
.

Taking inverse transform (by looking up Appendix B) yields

vo(t) = V0

(
1− e−t/τ

)
.

The output vo approaches V0 at rate of τ .

1.8.4 Output impedance

Let’s say io is the current coming in from the outside through the terminal vo. Current
conservation equation for node vo becomes

1
R

(vo − vi) + sC vo = io.

Therefore vo is linear combination of input voltage vi and current io like this:

vo =
vi

1 + sRC
+

R io
1 + sRC

.

We sometimes use a notation, vo/vi, for response function, to remind ourselves the
meaning of the function and to save the number of symbols involved. Note that vo/vi

is not always vo divided by vi, but it is always response of vo to vi. With this notation
we rewrite above formula like below:

vo = vo/vi · vi + vo/io · io,

where vo/vi is the transfer function H(s):

H(s) = vo/vi =
1

1 + sRC
,

and vo/io is the output impedance Zo(s):

Zo(s) = vo/io =
R

1 + sRC
.
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Parasitic coupling on output Suppose that there is coupling between the output
vo and an external node vx, like shown in the right. Equa-
tion for node vo is

1
R

(vo − vi) + sC vo + scx (vo − vx) = 0.

Therefore

vo =
1

1 + sRC ′ vi +
sR cx

1 + sRC ′ vx, C ′ = C + cx.

vi

R
vo

C

cx

vx

Step response to vx (vi stay unchanged):

vo =
sRcx

1 + sRC ′ ·
Vx

s
=

cxVx

C ′ ·
RC ′

1 + sRC ′ . (5)

In t space (taking inverse transform):

vo(t) = Vx ·
cx

C ′ · e
−t/RC′

.

If cx is relatively small (like parasitic coupling) C ′ ∼ C. Eq. (5) may be rewritten as

vo =
R

1 + sRC
·Qx = Zo Qx, Qx = cxVx. (6)

Recalling that inverse Laplace transform of constant is delta function, we see that vo

can also be interpreted as response to impulse current Qx δ(t) injected into vo. Suppose
that C is initially charged to Vo (vi is tied to DC level of Vo) and uncharged, relatively
small capacitor cx is connected in parallel with C at t = 0:

vi

R
vo

C cx =⇒
vi

R
vo

C cx

This is effectively giving impulse current of −cxVo δ(t) to node vo. By taking inverse
transform of Eq. (6) we get

vo(t) = −Vo ·
cx

C
· e−t/RC .

Output voltage drops by a factor of cx/C, and goes back to the original value at rate
of RC.
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AC coupling and decoupling Let’s take a look at other popular AC coupling
and decoupling techniques in terms of frequency response, as yet another example of
circuit equation. Here Z represents impedance at a node, say vo, of your circuit and we
are interested in coupling to an external node, say vi. We connect vi and vo through a
capacitor or an inductor.

vi

C

vo

Z

vi

L
vo

Z

For capacitor, equation for node vx is

vo

Z
+ sC(vo − vi) = 0 → vo/vi =

sC Z

1 + sC Z
.

Therefore, frequency response

vo/vi =
iωC Z

1 + iωC Z

This becomes unity as ω gets higher and becomes zero for very low frequency. Meaning
that a capacitor behaves as short circuit for high frequency and open circuit for low
frequency.

Similarly for inductor,

vo

Z
+

vo − vi

sL
= 0 → vo/vi =

Z

Z + sL
.

Frequency response

vo/vi =
Z

Z + iωL

This becomes unity as ω gets lower and becomes zero for very high frequency. Meaning
that an inductor behaves as short circuit for low frequency and open circuit for high
frequency.
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1.9 Partial fraction expansion and impulse response

Recalling that our response function zij is written with circuit matrix yij as follows,

(z) = (y)−1 → zij =
adj(y)ij

det(y)
,

and that
yii = Yi0 vi +

∑
j 6=i

Yij , yij = −Yij .

Since each Yij is either 1/R, sC, or 1/sL, trans impedance zij should be rational
function of s, and so as transfer functions zji/zii, i.e., all the response functions we
care has a form of

H(s) = H0 ·
1 + s u1 + s2 u2 + ... + sn un

1 + s t1 + s2 t2 + ... + sd td
,

where d and n is the order denominator and numerator, respectively. In case the
denominator does not have root at the origin, we can factorize the denominator like

1 + s t1 + s2 t2 + ... + sd td,= (1 + s τ1)(1 + s τ2)...(1 + s τd),

where −1/τi are roots of the denominator. And in case n < d, H(s) can be written in
partial fraction expansion:

H(s) =
∑

k

τk

1 + s τk
ak. (7)

It will turn out all the response function we want to know falls into this case.1 In case
the denominator has root at the origin, we can bring one of τk to infinity. Recalling
that

h(τ) =
1

2πi

∫ +i∞

−i∞
H(s) esτ ds,

with response functions we care (rational with n < d, i.e., |H(s)| → 0 as |s| → ∞), we
can use residue theorem to calculate impulse response from frequency response. From
Jordan’s lemma, above integral is either the sum of residues in the right half of s plane
(for τ < 0) or that in the left half of s plane (for τ > 0). Therefore H(s) should not

1Well, there’s an exception. It is an ideal high-pass filter:

H(s) =
s τc

1 + s τc
.

This does not become zero with |s| → ∞. However, we can calculate step response and sine wave response
since response as a whole (H(s) 1

s , or H(s) τ
1+sτ ) can be written in a form of Eq. (7). And they give reasonable

results.
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have pole in the right half of s plane to meet causality condition, h(τ) = 0 for τ < 0. In
other words real part of all τk should be positive. In case H(s) has poles on imaginary
axis, we can still get meaningful transient behavior, by shifting poles slightly to the
left by λ and then take λ → 0 at the end, like we did in Section 1.6.3. This operation
is equivalent to bringing corresponding τk to infinity. Inverse transform of Eq. (7) is

h(t) = L−1{H(s)} =
∑

k

ak e−t/τk , for (t > 0).

Since real part of τk is positive, h(t) decays as time goes by. In a system which does not
respond before input, will also forget what it received, or it comes back to the original
state by itself after disturbance, the system is stable. Wait a minute, there must be
cases where the system is causal and unstable, like latch? Appendix A provides some
note on this. In short, frequency response is not well defined in such system.

Useful facts

• If a system consists of R and C only, all poles are located on real axis in left half
plane. (No ringing)

• If a system consists of R and C and L only, like those we have looked at so far,
real part of all poles are negative. (Always stable, but may ring).

• Above coming from the fact that all component parameters (resistance, capaci-
tance, and inductance) are positive.

Useful formula Since we are going to find response functions by hand, (muscle
aided design) we do not want to deal with high order polynomials. And for lower order
polynomials there’s a few useful formula in Appendix B (only two pages). We have
been using these formula already and that’s all we need to know.

Kramers-Kronig and Bode Causality condition, which cuts freedom of impulse
response function by half, leads to a fact that real part and imaginary part of frequency
response function H(iω) can not be independent. If you know one, you can calculate
the other from it. The relation is known as Kramers-Kronig relation. We do not
use this relation because our objective is to find response functions of known circuit
network. We can always find full response functions (both real and imaginary part).
However it is useful when you want to know the response function of an unknown system
by measurement. It will be difficult to measure exact I-V relation, however power-
amplitude relation is much easier to measure. Since power is related with amplitude
by real part of the response function, we can get real part of response function from
such measurement. Then we can calculate imaginary part from the real part to get
complete response function. Similarly there’s a relation between phase and amplitude
of H(iω), which is known as Bode’s theorem.
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1.10 Bode plot for frequency response

We have just learnt that response function is rational function of s:

H(s) = H0 ·
1 + s u1 + s2 u2 + ... + sn un

1 + s t1 + s2 t2 + ... + sd td
,

and that partial fraction expansion is convenient way to see impulse response. In this
section, we learn convenient way to look at frequency response and find a way to get
some idea of impulse response from frequency response.

1.10.1 General formulation

Because H(s) is rational function, it can also be written in factorized form:

H(s) = H0 ·
(1 + s τn1)(1 + s τn2)...(1 + s τnn)
(1 + s τd1)(1 + s τd2)...(1 + s τdd)

,

where−1/τn1,−1/τn2, ...,−1/τnn and−1/τd1,−1/τd2, ...,−1/τdd are roots of numerator
and denominator, respectively. In case one of polynomials has root at the origin, we
can take it by bringing one of τ to infinity. Taking log of absolute value yields

log |H(iω)| = log |H0| + log |1 + iω τn1| + log |1 + iω τn2| + ... + log |1 + iω τnn|
− log |1 + iω τd1| − log |1 + iω τd2| − ... − log |1 + iω τdd| .

Let’s sort τni, τdi with respect to real part of corresponding root of polynomials:

log |H(iω)| = log |H0| +
∑

i

σi log |1 + iω τi| , Re(1/τi+1) ≥ Re(1/τi),

where

σi =

{
+1 if −1/τi is one of roots of numerator (−1/τnj),
−1 if −1/τi is one of roots of denominator (−1/τdj).

As for phase,

arg (H (iω)) = arg (H0) +
∑

i

σi arg (1 + iω τi) ,

Note that (1 + iω τ) /τ = (iω + 1/τ) is vector in complex plane from point −1/τ to
point iω, i.e., |iω + 1/τ | is distance in complex plane between point iω and point −1/τ
and arg (iω + 1/τ) is angle to the real axis.
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1.10.2 Real roots

For real τ , each term can be estimated as follows:

log |1 + iω τ | =


∼ 0 (ω τ � 1),
log
√

2 (ω τ = 1),
∼ log |ω τ | = log |ω|+ const. (ω τ � 1),

and

arg (1 + iω τ) =


∼ 0 (ω � 1/τ),
π/4 (ω = 1/τ),
∼ π/2 (ω � 1/τ).

Therefore, in case all roots are real, the following can be said when we sweep ω from
zero to infinity:

• Whenever ω crosses one of 1/τi, slope of log |H(iω)| in log scale increases (or
decreases) by 1 and arg(H(iω)) increases (or decreases) by π/2 if 1/τi is one of
τnj (or τdj).

Let’s take a look at some simple cases. The first is RC low-pass filter:

H(s) =
1

1 + s τ1
.

This one has a pole at −1/τ1. Log of ab-
solute value of frequency response:

log |H(iω)| = − log |1 + iωτ1|.

|H(iω)| is unity for ω � 1/τ1, and as ω
crosses 1/τ1 slope become −1 in log scale
(proportional to ω−1). At the same time,
phase changes from 0 to π/2.

Re

Im

O−1/τ1

iω

ω

|H(iω)|

1/τ1

1
1/ω

Next example will be two pole response function with both poles are at real axis.

H(s) =
1

(1 + s τ1)(1 + s τ2)
.

Log of its absolute value:

log |H(iω)| =− log |1 + iωτ1|
− log |1 + iωτ2|.

In case 1/τ2 � 1/τ1, log |1 + iωτ2| is still
close to zero for ω � 1/τ2, we will see sloe
of −1 in between 1/τ1 and 1/τ2. And slope
becomes −2 at ω � 1/τ2.

Re

Im

O−1/τ1−1/τ2

iω

ω

|H(iω)|

1/τ1 1/τ2

1
1/ω

1/ω2
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The last example for real roots is

H(s) =
(1 + s τ3)

(1 + s τ1)(1 + s τ2)
,

log |H(iω)| = + log |1 + iωτ3| − log |1 + iωτ1| − log |1 + iωτ2|.

The shape of |H(iω) depends on the relation between τ3 and τ1,2. Below plots are for
1/τ1 < 1/τ2 < 1/τ3, 1/τ1 < 1/τ3 < 1/τ2, 1/τ3 < 1/τ1 < 1/τ2, from left to right.

ω

|H(iω)|

1/τ1 1/τ2 1/τ3

1 1/ω

1/ω2

1/ω

ω

|H(iω)|

1/τ1 1/τ3 1/τ2

1 1/ω

1/ω

ω

|H(iω)|

1/τ3 1/τ1 1/τ2

1

ω 1/ω

1.10.3 Complex roots

Now let us think about cases polynomials have complex roots, where impulse response
has ringing components. Let’s say −1/τ1 is one of complex roots of a polynomial.
Since all of component parameters are real, coefficients of sn in the polynomial are all
real. If such polynomial has a complex root, its complex conjugate is also one of roots.
Therefore complex conjugate of −1/τ1 is also a root of the polynomial.

Let’s take a look at a simple case

H(s) =
1

(1 + s τ1)(1 + s τ2)
,

Here τ1 is complex, 1/τ2 must be complex conjugate of 1/τ1. Let’s
say λ and iω0 is real part and imaginary part of −1/τ1:

−1/τ1 = −λ + iω0, −1/τ2 = −λ− iω0.

Log of absolute value of frequency response is

log |H(iω)| = − log |iω + 1/τ1| − log |iω + 1/τ2|+ const.

Re

Im

O

−1/τ1

−1/τ2

iω0

iω

If we sweep ω from 0 to infinity, the second term decreases monotonically as ω getting
larger, however the first term has peak at ω = ω0 where −1/τ1 and iω is closest. Sim-
ilarly, if numerator has a complex root, we should see a notch. For ω much greater
than 1/τ1 or 1/τ2 both terms gives 1/ω, resulting slope of −2 (proportional to 1/ω2).
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1.10.4 Example: Transfer function of RLC

Let’s take a look at RLC resonator again. This time, we like to look at response
of voltage across the capacitor. Suppose that resonator is driven by vi and that the
voltage across the capacitor is vo. Transfer function H(s) = vo/vi will be

H(s) =
1

(1 + s τ⊕)(1 + sτ	)
,

where
1/τ⊕ = λ +

√
λ2 − ω2

0, 1/τ	 = λ−
√

λ2 − ω2
0.

In case λ > ω0, both poles are on the real axis. As we
decrease λ, two poles are getting closer, and they are on
top of each other when λ = ω0. Then as we go further,
poles become complex and reaches at imaginary axis with
λ = 0, where we see sustained oscillation. Recalling that λ =
R/2L which has to be positive, we cannot go any further.
However, for some reason, if R becomes negative, the system
becomes unstable. This pole movement with decreasing R
while keeping L an C constant, is shown in the right.

Re

Im

O

+iω0

−iω0

Below shows frequency response |H(iω)| and arg H(iω) with a few λ. For λ = 5.0, we
have two separate corner with 1/ω slope in between. For λ = 0.1, we see sharp peak
at ω = ω0, as the result of complex poles. In any cases, we see slope of −2 at ω � ω0.
Figure 3 shows real part and imaginary part of H(iω) and |H(iω)| in linear scale. We
saw step response of current in Section 1.6.2.
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Figure 3: (top) Real and imaginary part of H(iω), where H(iω) is transfer function of RLC
resonator from driving voltage vi to voltage across the capacitor vo, i.e., H(s) = vo/vi. (bot)
|H(iω)| in linear scale.
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1.11 Small signal

Now we would like to think about how we want to treat highly non-linear semiconductor
devices in terms of linear response. The first thing I would like to point out is that
any smooth curve looks straight if you look at it close enough. In other words, suppose
y = f(x) is such a curve, if we look at it around x = x0,

f(x) = f(x0) +
∂f

∂x
· (x− x0) +

1
2

∂2f

∂2x
· (x− x0)2 + ... ,

When (x− x0) is small, (x− x0)2 is even smaller. Therefore, within sufficiently small
∆x = x− x0, ∆f = f(x)− f(x0) is proportional to ∆x:

∆f =
∂f

∂x
·∆x.

For semiconductor devices, we usually set a DC bias current and put signal as small
displacement from the DC operating point.

1.11.1 p-n junction diode

From Shockley formula conductance is calculated as follows:

I = Is eV/vt → gD =
∆I

∆V
=

∂Ise
V/vt

∂V

∣∣∣∣∣
I=Ibias

=
Ibias

vt
.

It is known that p-n junction has capacitance which consists of junction capacitance
(cj) and diffusion capacitance (cd) which can be put in parallel with g. Therefore
admittance

Y (s) = gD + scj + scd = gD(1 + scD/gD), cD = cj + cd.

Process technology and size of the device determines Is and cD as a function of oper-
ating condition (bias and temperature). However gD is only function of bias current
and vt = kT/q, it is less sensitive to process technology and size.

1.11.2 BJT

Let us recall large signal BJT equations for active or weak saturation region:

Ib = Is eVbe/vt

(
1 +

Vce

VA

)
, Ic = β0 Ib,

where Ib and Ic is base and collector current, respectively. Note that early voltage VA

and β0 are function of operating condition. We usually set up circuit so that device
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has desired collector bias current Ic. Therefore we want expressions for coefficients in
terms of Ic. First transconductance

gm =
∂Ic

∂Vbe
=

Ic

vt
.

Note that this relation is independent of process technology. As we will see later, gm

plays central role in transistor circuits, we’d like use gm as much as possible for other
coefficients. Next conductance between base and emitter

gbe =
∂Ib

∂Vbe
=

Ib

vt
=

Ic

β0vt
=

gm

β0
.

Since base-emitter is made of p-n junction, we have a capacitor in parallel. We cus-
tomary call complex resistance between base and emitter as rπ:

1
rπ

= gbe + scbe =
gm

β0
(1 + s cbe/gm · β0) ,

or using complex β(s)

rπ =
β(s)
gm

, β(s) =
β0

1 + s τT β0
, τT =

cbe

gm
.

Conductance between collector and emitter

gce =
∂Ic

∂Vce
= β0Ise

Vbe/vt · 1
VA

=
Ic

1 + Vce/VA
· 1
VA

=
Ic

VA + Vce
.

Since VA is usually much greater than Vce,

gce ∼ Ic

VA
= gm ·

vt

VA
.

We customary call inverse of gce as ro.

ro =
1

gce
=

1
gm

· VA

vt

Since gm plays central role in transistor circuits, we like to measure rπ and ro in the
unit of 1/gm,

gmrπ = β(s), gmro = VA/vt.

Note that if we keep current density the same, these quantities do not depend on device
size. Finally, since we likely want to use transistor at fairly high current density, series
resistance of p-n junction is not negligible. We place rb between base terminal and the
junction, it appears gmrb is also a function of current density. Figure 4 shows model
circuit, with collector base capacitance cµ.
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Figure 4: Naive small signal model for BJT (left) and MOSFET (right).

1.11.3 MOSFET

Small signal model for MOSFET is shown in Figure 4. For MOSFETs, there’s no easy
relation between small signal parameters and operating condition, in general. We need
numerical model. We usually extract following factor m as well as gmro, τT = cg/gm

from numerical model because they are scale invariant. The definition of factor m is

gm =
ID

mvt
,

where ID is drain current. Factor m indicates “efficiency” transconductance relative to
BJT. m is usually about 1.3 for deep subthreshold region, and 2 ∼ 6 for active region.

1.11.4 Circuit analysis

Let us take a look at an RF amplifier shown in the right.
Vcc and Vee are supply voltage and we usually take Vee as
reference level, i.e., Vee = 0. Vbias sets up Vbe so that we get
desired collector bias current Ic. Rl represents load. Rl may
not be linear in a large signal sense. The input vi is driven
by external circuit and it enters through a capacitor. DC
level of vo is determined by Rl and Ic, which is, in case Rl

is linear,

vi

Vee

Rl

Vcc

vo

Vbias

Vo = Vcc −RlIc.

We like to keep Vo high enough so that not to squeeze Vce of the transistor. We usually
set up Vo higher than Vbias to keep base-collector junction from heavily forward biased.

Vcb = Vo − Vbias > 0
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Now we want to put small RF signal on vi. The DC voltage at base terminal of the
transistor is determined by the capacitor and the inductor and the transistor (base-
emitter junction). Since vi is high frequency, the capacitor acts a short circuit and the
inductor acts as an open circuit. Therefore vi goes directly the base terminal:

Vb = Vbias + vi.

The input voltage vi modulates base current by small amount ib, i.e., total base current
is Ib + ib. The same thing can be said for collector current. The voltage at the output
terminal is also modulated by small amount vo which is equal to the impedance of Rl

multiplied by collector current ic:

Vo + vo = Vo − rl ic,

where rl is the impedance of Rl operating at DC bias current of Ic. Therefore the
circuit can be decomposed into DC component and small-signal component as follows.

vi

Vee

Rl

Vcc

vo

Vbias

= Vbias DC

Vee

Rl

Vcc

Vo

+ vi SS

rl

vo

0V

0V

,

where transistor labeled as DC obeys the large signal equation, the first equation
of Section 1.11.2. Response of base and collector current, ib and ic, to the input vi is
described by the small signal model shown in the previous section. Therefore transistor
labeled as SS can be replaced by the small signal model shown in the left of Figure 4.

Now may be the time to set up circuit equation and study behavior of this cir-
cuit. However we like to stop here. Curious reader may refer Reference [1, 2], which
demonstrates small signal and noise analysis of various transistor circuits.2 As for noise
analysis Reference [3] provides an introduction.

2These are basically my design notes. It is a bit messy and not quite reader friendly with a lot of errors.
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Appendix A Causality and Stability

In Section 1.9, we saw as if causality and stability are identical. The reason is that
we presumed that all impulse response has corresponding frequency response when we
construct our linear response theory. In other words, we take the path of integral

h(τ) =
1

2πi

∫ +i∞

−i∞
H(s) esτ ds,

on the imaginary axis and divide s plane into left half plane and right half plane. With
this path H(iω) is given its meaning as frequency response function.

However, even if we find poles in right half of the s plane, we can still get useful
and causal impulse response function by shifting the path (which is on the imaginary
axis) to the right to include all the poles. If you use such path, h(τ) is still zero at
τ < 0, which means causal and for τ > 0, h(τ) will grow exponentially. There are cases
when it is useful to find time constant of growth or h(+0), but it is very rare and the
system is likely meta-stable and things like H(iω), Z(iω) and Y (iω) lose their meaning
as frequency response function.

Appendix B Useful Formula

Parallel impedance operator

(r1//r2) =
1

1/r1 + 1/r2
=

r1r2

r1 + r2
, (r1//r2//r3) =

1
1/r1 + 1/r2 + 1/r3

=
r1r2r3

r1 + r2 + r3

(r1//r2) = (r2//r1),
1

(r1//r2)
+

1
r3

=
1

(r1//r2//r3)
, (r1//c1) =

r1

1 + s r1c1

Minimum value

min
(

A

x
+ Bx

)
=
√

AB, xmin =

√
A

B
.
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Integral ∫ ∞

0

dω/2π

1 + (ω/ω0)
2 =

ω0

2π
tan−1

(
ω

ω0

)∣∣∣∣∞
0

=
1
4
ω0

∫ ∞

ωs

dω

ω(1 + (ω/ω0)2)
=

1
2

ln
(ω/ω0)2

1 + (ω/ω0)2

∣∣∣∣∞
ωs

=
1
2

ln
1 + (ωs/ω0)2

(ωs/ω0)2

Two pole response function and its impulse response

vo/vi =
1

1 + s b + s2 a
=

1
(1 + s τ⊕)(1 + s τ	)

(a > 0, b > 0)

1/τ⊕,	 =
b±

√
b2 − 4a

2a
=

b

2a

(
1±

√
1− 4a/b2

)
Discriminant 4a/b2:

4a/b2 < 1 → Exponential settling (overshooting)
= 1 → Critical damping
> 1 → Ringing

If 4a/b2 � 1,
1/τ⊕ = b/a− 1/b, 1/τ	 = 1/b

Canonical form of two pole amplifier

A(s) =
N

Q + sB + s2 A
=

A0

(1 + s τAA0)(1 + s τ⊕)

If 4AQ/B2 � 1:

A0 = N/Q, τA = B/N, 1/τ⊕ = B/A−Q/B

Laplace transform

L{δ(t)} = 1, L{1} =
1
s
, L{e−t/τ1} =

τ1

1 + s τ1
, L{t/τ1 e−t/τ1} =

τ1

(1 + s τ1)2
.

1
(1 + s τ1)(1 + s τ2)

=
1

τ1 − τ2

(
τ1

1 + s τ1
− τ2

1 + s τ2

)
s

(1 + s τ1)(1 + s τ2)
= − 1

τ1 − τ2

(
1
τ1
· τ1

1 + s τ1
− 1

τ2
· τ2

1 + s τ2

)
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1 + s τ3

(1 + s τ1)(1 + s τ2)
=

1
τ1 − τ2

(
τ1 − τ3

τ1
· τ1

1 + s τ1
− τ2 − τ3

τ2
· τ2

1 + s τ2

)
s

(1 + s τ1)2
=

1
τ2
1

(
τ1

1 + s τ1
− τ1

(1 + s τ1)2

)
1

s (1 + s τ1)
=

1
s
− τ1

1 + s τ1

1
s (1 + s τ1)(1 + s τ2)

=
1
s
− τ1

τ1 − τ2
· τ1

1 + s τ1
+

τ2

τ1 − τ2
· τ2

1 + s τ2

1
s (1 + s τ1)2

=
1
s
− τ1

1 + s τ1
− τ1

(1 + s τ1)2

1 + s τ3

s (1 + s τ1)(1 + s τ2)
=

1
s
− τ1 − τ3

τ1 − τ2
· τ1

1 + s τ1
+

τ2 − τ3

τ1 − τ2
· τ2

1 + s τ2

Approximation If τ1 � τ2,

s

(1 + s τ1)(1 + s τ2)
∼ 1

τ1τ2

(
τ2

1 + s τ2
− τ2

τ1
· τ1

1 + s τ1

)
1

s (1 + s τ1)(1 + s τ2)
∼ 1

s
− τ1

1 + s τ1
+

τ2

τ1
· τ2

1 + s τ2
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