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Abstract

A simple derivation of diffusion current noise in semiconductor devices is presented. Diffusion

current noise explains shot noise behavior of semiconductor devices such as bipolar junction diode,

bipolar junction transistor (BJT) and MOSFET in subthreshold region where diffusion current is

the dominant current component.
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I. INTRODUCTION

Noise in some semiconductor devices have an interesting property. When such a device is

biased to a current I much greater than its saturation current Is, its noise spectral density

reduces by half from the amount one would expect from the thermal noise formula, namely,

〈
i2N

〉
f

= 2qI = 2kTg(I),

where iN , 〈i2N〉f , and g(I) is noise current, its spectral density per ordinary frequency and

conductance of the device, respectively. At equilibrium, where bias current is zero, it comes

back to thermal noise formula1,2

〈
i2N

〉
f

= 4qIs = 4kTg(0).

This behavior can be explained by assuming total noise is the sum of two shot noises due

to forward going current and reverse going current.2 And it has been shown that shot noise

and thermal noise are identical in semiconductor at equilibrium.2,3 In this paper, I would

like to explain this behavior from the noise of diffusion current of classical gas of carriers.

We consider motion of carriers in a conductor of cross sectional area A, length L, resis-

tance R. We set x-axis along with the conductor length and consider x direction of motion

only, just for simplicity. It is well known that resistance R is expressed using collision time

τc, mass of a carrier m, charge of a carrier q and carrier density n as

R = L/Aσ, σ = n q µ, µ = q τc/m,

where σ and µ is conductivity of the conductor and mobility of the carrier, respectively.

II. RANDOM AGITATION FORCE

At equilibrium, equation of motion for each carrier is

mv̇i = −m

τc

vi + q Ei,

where Ei represents thermal agitation force and we assume its spectral density is flat (white).

When energy loss by τc and power provided by Ei balances each other, the system is at
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equilibrium. The magnitude of Ei can be found by this condition as follows. From Laplace

transform of the equation

vi(s)/Ei =
q τc

m
· 1

1 + s τc

,

we get relation between spectral densities〈
v2

i

〉
ω

=
(q τc)

2

m2
· 1

1 + ω2τ 2
c

〈
E2

i

〉
ω

, (1)

and mean square velocity 〈
v2

i

〉
=

∫ ∞

0

〈
v2

i

〉
ω

dω =
π

2
· q2τc

m2

〈
E2

i

〉
ω

.

At equilibrium this should be equal to the thermal velocity kT/m, therefore spectral density

of agitation force is found to be〈
E2

i

〉
ω

=
4kT

2π
· 1

qµ
=

4kT

2π
· n

σ
(2)

III. NOISE CURRENT

Recalling that current is expressed by number of carriers inside the conductor N as

I = An q v̄ = ALn q v̄/L = Nv̄ q/L,

and that v̄ is average of each carrier’s velocity:

v̄ =
1

N

∑
i

vi or
〈
v̄2

〉
=

1

N2
N

〈
v2

i

〉
=

1

N

〈
v2

i

〉
,

we see noise current is expressed by mean square of carrier velocity as follows:〈
i2N

〉
=

〈
(I − Ī)2

〉
,

= N2q2
〈
v̄2

〉
/L2,

= Nq2
〈
v2

i

〉
/L2.

Note that average current Ī is zero at equilibrium. Same thing can be said for spectral

densities as well: 〈
i2N

〉
ω

= Nq2
〈
v2

i

〉
ω

/L2

Using Eq. (1) and Eq. (2), we find noise spectral density〈
i2N

〉
ω

=
N

L2
q2

〈
v2

i

〉
ω

=
Nqµ

L2
· 4kT

2π
· 1

1 + ω2τ 2
c

. (3)

This reduces to the thermal noise formula. For ω � 1/τc,〈
i2N

〉
f

= 2π
〈
i2N

〉
ω

= 4kT/R.
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IV. DRIFT CURRENT : RESISTORS

Thermal velocity vT can be written with mean free path l = vT τc as

vT = v2
T /vT =

kT

m
· τc

l
= µ

kT/q

l
.

Recalling that drift velocity vD is µĒ =µV/L, the ratio between drift velocity and thermal

velocity is

vD

vT

=
V

kT/q
· l

L
.

In resistors, mean free path is in the order of nano meters, whereas L is in the order of micro

meters, drift current hardly affect each carrier’s activity. Therefore noise is not sensitive to

drift current. 〈
v2

i

〉
= v2

D + v2
T ∼ v2

T

V. DIFFUSION CURRENT : TRANSISTORS

Suppose that some external force makes non-uniform carrier density. Then, there must

be diffusion current

j = −qD
∂n(x)

∂x
.

In case total current is dominated by this diffusion current, gradient of n(x) is constant

because current at any cross section must be the same:

∂n(x)

∂x
=

n(L)− n(0)

L
=

n(0)

L

(
n(L)

n(0)
− 1

)
.

Therefore total current

I = Aj =
A qD n(0)

L

(
1− n(L)

n(0)

)
= Is

(
1− n(L)

n(0)

)
.

Depletion region of p-n junction makes it possible to create such situation described here

(carrier density gradient, absence of drift current). In subthreshold MOSFET, for example,

n(0) ∝ exp(−qVgs/kT ) and n(L)/n(0) = exp(qVds/kT ).4 Therefore

Id ∝ A

L
e−qVgs/kT

(
1− eqVds/kT

)
.
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As for noise, since diffusion current is nothing but current driven by thermal agitation

force, we can use Eq. (3). Inserting N = AL(n(0) + n(L))/2 into Eq. (3) and using Nernst-

Einstein5 relation D = µkT/q yields〈
i2N

〉
ω

=
2q

2π
· A qD n(0)

L

(
1 +

n(L)

n(0)

)
.

This reproduces the shot noise behavior of semiconductor devices. For example, noting that

device current I is very close to Is for n(0) � n(L), above is reduced to “shot noise” formula.

In ordinary frequency, 〈
i2N

〉
f

= 2qI.

And at equilibrium where n(L) = n(0),〈
i2N

〉
f

= 4qIs.

Appendix A: Electromotive force

For arbitrary cross section, there is nA carriers per unit length and average agitation

force is 〈
Ē2

〉
=

1

(nA)2
· nA

〈
E2

i

〉
=

1

nA

〈
E2

i

〉
.

Mean square electromotive force across the conductor can be summed up for the conductor’s

length L: 〈
V 2

〉
= L

〈
Ē2

〉
=

L

nA

〈
E2

i

〉
.

Same thing can be said for each frequency component:〈
V 2

〉
ω

=
L

nA

〈
E2

i

〉
ω

.

Therefore 〈
V 2

〉
ω

=
L

nA

〈
E2

i

〉
ω

= 4kTR / 2π.
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