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Abstract

A short path to a derivation of switched capacitor implementation of second-order
delta-sigma modulator, for those who do not know z-Transform.
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1 Discrete Time Linear System

We are going to study discrete time linear systems. In such systems, we only care
discrete time points nTs, where n is an integer and Ts is the sampling period. For time
dependent quantities, we use square bracket to point time points of the quantity:

x[n] = x(nTs),

where x(t) is a function of the continuous time t. In a linear system, relation between
input and output is linear, which means it satisfies principle of superposition. Suppose
that an input of x1[n] gives output of y1[n] and that another input x2[n] gives output
y2[n], then the output will be a y1[n] + b y2[n] if input a x1[n] + b x2[n] is given. Let
F{·} denote the relation between the input and the output of the system, we write
above relation between x1, x2 and y1, y2 as

y1[n] = F {x1[n]} , y2[n] = F {x2[n]} .

When the system is linear, the principle of superposition can be expressed as

a y1[n] + b y2[n] = F {a x1[n] + b x2[n]} ,

where a and b is arbitrary constant.

1.1 Impulse response and frequency response

Let’s decompose x into impulse functions:

x[n] =

∞∑
m=−∞

x[m] δ[n−m].

where δ[n] is the impulse function:

δ[n] =

{
1 (n = 0),

0 (n ̸= 0),

and put it into y = F{x}:

y[n] = F{x[n]},

=

∞∑
m=−∞

F{x[m] δ[n−m]}.

Here x[m] is just a parameterized coefficient. We can bring it out from F :

y[n] =

∞∑
m=−∞

x[m]F{δ[n−m]}.
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Exchanging the order of multiplication and using h[n] for impulse response F {δ[n]},
we see h[n−m] is contribution weight of input at time m to the output at n:

y[n] =

∞∑
m=−∞

h[n−m]x[m], h[n] = F {δ[n]} .

The system will not react before the impulse is given to the input, therefore h[n] = 0
for n < 0, and it should be enough to take summation up to n for y[n]:

y[n] =
n∑

m=−∞
h[n−m]x[m].

Now we would like to take a look at frequency response of the system. Output y[n] for
complex sine wave input, x[n] = xf e

i 2πf nTs will be

y[n] =
n∑

m=−∞
h[n−m]xf e

i 2πf mTs =
n∑

m=−∞
h[n−m]xf e

i 2πf
Fs

m,

where we defined Fs = 1/Ts. With a new variable, m′ = n−m, (m = n−m′), we can
get rid of n from summation boundary and summand, i.e.,

y[n] =
0∑

m′=∞
h[m′]xf e

i 2πf
Fs

(n−m′),

= xf e
i 2πf

Fs
n

∞∑
m=0

h[m] e−i 2πf
Fs

m.

The summation is constant (does not depend on n), i.e., sine wave input gives sine
wave output of the same frequency, which is anticipated result from a linear system.
If we write y[n] = yf exp(i2πfFs

n), we see frequency response is Fourier transform of
impulse response, (since h[n] = 0 for m < 0, we can take summation from −∞) and
we call it H.

yf
xf

=

∞∑
n=0

h[n] e−i 2πf
Fs

n =

∞∑
n=−∞

h[n] e−i 2πf
Fs

n ≡ H(ei
2πf
Fs ).

Inverse Fourier transform of will be,

h[n] =
1

Fs

∫ Fs/2

−Fs/2
H(ei

2πf
Fs ) ei

2πf
Fs

ndf.

Since h[n] = 0 for n < 0, there must be corresponding condition for a complex function
H to be a frequency response function. We will come back to this condition later in

Section 1.4. However, we will see the reason why I write H(ei
2πf
Fs ) rather than H(f) in

the next page.
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1.2 Frequency response and z-Transform

We have just learnt that impulse response is Fourier transform of frequency response:

h[n] =
1

Fs

∫ Fs/2

−Fs/2
H(ei

2πf
Fs ) ei

2πf
Fs

ndf, H(ei
2πf
Fs ) =

∞∑
n=−∞

h[n] e−i 2πf
Fs

n.

With z = ei
2πf
Fs , above can be written as

h[n] =
1

Fs

∫ Fs/2

−Fs/2
H(z) zn df, H(z) =

∞∑
n=−∞

h[n] z−n.

We see that z makes a circle as f goes from −Fs/2 to Fs/2, therefore the integral with
respect to f become contour integral on complex plane.

h[n] =
1

2πi

∮
|z|=1

H(z) zn−1dz,

where we used dz = 2πi
Fs

ei
2πf
Fs df .

Now, we found a transformation pair. This transform from n space to z space is
called z-Transform and we use Z{·} to denote this transform:

Z {h[n]} =

∞∑
n=0

h[n] z−n = H(z).

Note that summation starts from 0 since h[n] = 0 for n < 0.
The inverse transform Z−1 is,

Z−1 {H(z)} =
1

2πi

∮
|z|=1

H(z) zn−1dz = h[n].

This transform has similar properties as Fourier/Laplace transform. For example,

y[n] = a x1[n] + b x2[n] → Y (z) = aX1 + bX2,

y[n] =

n∑
m=−∞

h[n−m]x[m] → Y (z) = H(z)X(z),

H(z∗) = H(z)∗.

And z acts as time increment operator:

Z−1{zH(z)} = h[n+ 1], Z−1{z−1H(z)} = h[n− 1].

And H(ei
2πf
Fs ) gives frequency response. Since ei

2πf
Fs is a periodic function of period Fs,

H(ei
2πf
Fs ) is also a periodic function of the same period. This is anticipated result from

a discrete time system where frequency f and f plus any integer multiple of Fs gives
the same time progression.
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1.3 z-Transform of basic functions

Let’s take a look at z-Transform of a few discrete time functions, and calculate its
inverse transform to see if it gives the original function.

1.3.1 Impulse function

x[n] =

{
1 (n = 0),

0 (n ̸= 0).
0

t

1

Taking z-Transform yields,

X(z) = Z{x[n]} =

∞∑
n=0

x[n] z−n = x[0] z−0 = 1.

z-Transform of impulse function is 1.

The inverse transform is calculated as follows:

Z−1{X(z)} =
1

2πi

∮
|z|=1

X(z) zn−1dz =
1

2πi

∮
|z|=1

zn−1dz.

Using

z = e
i2πf
Fs , dz =

i2π

Fs
e

i2πf
Fs df,

the contour integral on complex plane becomes usual integral on real axis, i.e.,

Z−1{X(z)} =
1

Fs

∫ Fs/2

−Fs/2
e

i2πf
Fs

n df =

{
1 (n = 0),

0 (n ̸= 0).

We see that inverse z-Transform of 1 is impulse function.

1.3.2 Step function

x[n] =

{
0 (n < 0),

1 (n ≥ 0).
0

t

1

z-Transform:

X(z) = Z{x[n]} =

∞∑
n=0

x[n] z−n =

∞∑
n=0

z−n =
1

1− z−1
.
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Inverse transform:

Z−1{X(x)} =
1

2πi

∮
|z|=1

X(z) zn−1 dz =
1

2πi

∮
|z|=1

zn−1

1− z−1
dz =

1

2πi

∮
|z|=1

zn

z − 1
dz.

We have a pole on top of |z| = 1, but we get the correct answer if we take integral over
slightly larger circle, at least for n ≥ 0,

Z−1{X(x)} = lim
δ→+0

1

2πi

∮
|z|=1+δ

zn

z − 1
dz = 1. (n ≥ 0)

We will cover case of n < 0 in the next section.

1.3.3 Geometric progression

Now, let’s take a look at a geometric progression.

x[n] =

{
0 (n < 0),

a γn (n ≥ 0).

Step function is a special case when a = 1 and γ → 1. z-Transform is

X(z) = Z{x[n]} =

∞∑
n=0

aγnz−n =
a

1− γz−1
.

Let’s calculate inverse transform of X(z) to see if it gives the original function: a γn.

Z−1{X(z)} =
1

2πi

∮
|z|=1

X(z) zn−1 dz =
1

2πi

∮
|z|=1

a zn

z − γ
dz

For n ≥ 0, the numerator of the integrand is holomorphic, the integral have non-zero
value if |γ| ≤ 1, i.e.,

Z−1{X(z)} =
1

2πi

∮
|z|=1

a zn

z − γ
dz =

{
a γn (|γ| ≤ 1, n ≥ 0),

0 (|γ| > 1, n ≥ 0).

Note that we take slightly larger circle if |γ| = 1 just as we did in the last section.
For n < 0, let’s start with n = −1,

Z−1{X(z)}
∣∣
n=−1

=
a

2πi

∮
|z|=1

1

z(z − γ)
dz

Recalling that
1

z(z − γ)
=

1

γ

(
1

z − γ
− 1

z

)
,
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we get

Z−1{X(z)}
∣∣
n=−1

=
a

γ 2πi

∮
|z|=1

1

z − γ
− 1

z
dz.

Therefore

Z−1{X(z)}
∣∣
n=−1

=

{
0 (|γ| ≤ 1),

−a γ−1 (|γ| > 1).

If we repeat this procedure for n = −2, −3, ..., we will find

Z−1{X(z)}
∣∣
n=−2

= γ−1 Z−1{X(z)}
∣∣
n=−1

,

Z−1{X(z)}
∣∣
n=−3

= γ−1 Z−1{X(z)}
∣∣
n=−2

, .......

Therefore

Z−1{X(z)} =

{
0 (|γ| ≤ 1, n < 0),

−a γn (|γ| > 1, n < 0).

Combining n ≥ 0 case for |γ| ≤ 1

Z−1{X(z)} =

{
0 (n < 0),

a γn (n ≥ 0).

And for |γ| > 1

Z−1{X(z)} =

{
−a γn (n < 0),

0 (n ≥ 0).

The inverse transform gives different answer depending on absolute value of γ. The
inverse transform gives the original function if only |γ| ≤ 1 and |γ| > 1 gives non-zero
value for negative time points, which is not a valid response function.

Sine wave generator Let’s consider a case that γ = ei
2πf
Fs , a = 1. And use θ = 2πf

Fs

to make equations look simpler.

x[n] = eiθn, X(z) =
1

1− eiθ z−1
.

Recalling that cos θ and sin θ is, respectively, real and imaginary part of eiθ,

c[n] = cos θn = Rex[n], s[n] = sin θn = Imx[n].

Therefore, z-Transform of cosine and sine will be

C(z) = Z {cosnθ} = Z
{
einθ + e−inθ

2

}
=

X(z) +X(z)∗

2
=

1− z−1 cos θ

1− 2 cos θ · z−1 + z−2
,
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and

S(z) = Z {sinnθ} = Z
{
einθ − e−inθ

2i

}
=

X(z)−X(z)∗

2i
=

z−1 sin θ

1− 2 cos θ · z−1 + z−2
.

Therefore for cosine,(
1− 2 cos θ · z−1 + z−2

)
C(z) = 1− z−1 cos θ.

Bringing this back to n-space yields

c[n] = 2 cos θ c[n− 1]− c[n− 2] + δ[n]− cos θ · δ[n− 1].

or

c[0] = 2 cos θ · c[−1]− c[−2] + δ[0]− cos θ · δ[−1] = 1,

c[1] = 2 cos θ · c[0]− c[−1] + δ[1]− cos θ · δ[0] = cos θ,

c[n] = 2 cos θ · c[n− 1]− c[n− 2]. (n ≥ 2)

c[n] should be equal to cosnθ = cos(2πf/Fs · n) = cos(2πf nTs).
As for sine, only initial values are different:

s[0] = 0,

s[1] = sin θ,

s[n] = 2 cos θ · s[n− 1]− s[n− 2]. (n ≥ 2)

Below compares c[n] and s[n] with the system math function, sin(θn) and cos(θn).

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70

n

c[n] and s[n] θ = 2πf/Fs, f/Fs = 0.0234

c[n]
cosnθ
s[n]

sinnθ
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1.4 Causality condition

We are interested in causal systems. Impulse response of such a system should be zero
before the impulse is given. Now we would like to find the causality condition, i.e.,
impulse response is zero for all negative time points. That is h[−n] = 0 for n ≥ 1.

h[−n] =
1

2πi

∮
|z|=1

H(z) z−n−1 dz = 0. (n ≥ 1)

To avoid pole at the origin (which is within the unit circle), we bring this integral to
ζ = z−1 space.

ζ = z−1, dζ = −(z−1)2dz.

Since ζ rotates opposite direction to z, the minus sign in dζ will be canceled with
∮
.

The integral becomes

1

2πi

∮
|z|=1

H(z) z−n−1 dz =
1

2πi

∮
|z|=1

H(z) (z−1)n−1(z−1)2 dz,

=
1

2πi

∮
|ζ|=1

H(ζ−1) ζn−1 dζ.

Therefore the wanted condition is that H(ζ−1) does not have pole inside the unit circle.
The region inside the unit circle in ζ-space is mapped to the region outside the unit
circle in z-space. Therefore the same condition can be said that H(z) does not have
pole outside the unit circle in z-space.

In the geometric progression example we saw in the last section, H(z) have pole at
z = γ and |γ| has to be less than 1 to meet h[−n] = 0.

Formal solution for unstable system When we find H(ζ−1) to have poles in-
side the unit circle as a result of a difference equation (See next section), we can still
find causal impulse response by making integration path smaller so that all poles are lo-

cated outside the circle. However, H(ei
2πf
Fs ) will lose its meaning as frequency response

function. Indeed, such a solution grows indefinitely, there’s no Fourier transform of
such function.

In the geometric progression with |γ| > 1, for example, if we use a path which
encircles the point z = γ, we will get causal result Z−1{X(z)} = aγn for n ≥ 0.
However it does not have reasonable frequency response.

In this document, we are mainly concerned with stable systems, i.e., response func-
tions are bound and have reasonable frequency responses. We are going to use |z| = 1
exclusively.
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1.5 z-Transform and difference equation

1.5.1 General form of response function

Consider a linear system which maps input x[n] to output y[n]. Output y at time point
n should be determined from the past states (input and output) and the current input
x[n]. Therefore y[n] should be a linear combination of those.

y[n] =
D∑
j=1

aj y[n− j] +
N∑
j=0

bj x[n− j],

where D, N determines how far past point makes influence to the current state of the
system and aj , bj are constant coefficients. Taking z-Transform yields

Y (z) =
D∑
j=1

aj z
−j Y (z) +

N∑
j=0

bj z
−j X(z). (1)

Therefore transfer functionH(z) can be written with coefficients of difference equations
as follows.

H(z) =
Y (z)

X(z)
=

b1z
−1 + b2z

−2 + ...+ bNz−N

1− a1z−1 − a2z−2 − ...− aDz−D

As we have just seen in the previous section, the condition for H(z) being causal as
well as H(eiωt) being reasonable frequency response will be that polynomial 1− a1ζ −
a2ζ

2 − ...− aDζ
D does not have root inside the unit circle.

Suppose that γn are the roots of the denominator, H(z) can be decomposed into
partial fractions like this

H(z) =
α1

1− γ1z−1
+

α2

1− γ2z−1
+ ... +

αD

1− γDz−1
+ P (z−1),

where P (ζ) is a polynomial of the order (N −D), and it will be zero if (N −D) < 0.
We would like to become more familiar with the transfer function of α/(1− γz−1).

1.5.2 Integrator

Let’s take a look at a simplest case of one term with α = 1, γ = 1, first. That is

Y = H(z)X, H(z) =
1

1− z−1
.

Therefore (
1− z−1

)
Y = X.
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Bringing this back to n space yields corresponding difference equation:

y[n]− y[n− 1] = x[n].

Therefore

y[0] = y[−1] + x[0] = x[0],

y[1] = y[0] + x[1] = x[0] + x[1],

y[2] = y[1] + x[2] = x[0] + x[1] + x[2],

...

y[n] = x[0] + x[1] + x[2] + ...+ x[n] =

n∑
i=0

x[n].

y[n] is the sum of all the input from the past. H(z) = 1/(1− z−1) is an integrator.
Frequency response is

H(ei
2πf
Fs ) =



1

i2πf/Fs
(f/Fs ≪ 1),

1

1 + i
(f/Fs = 1/4),

1

2
(f/Fs = 1/2).

Frequency response diverges as f → 0, which means the input can not have DC com-
ponent (average value has to be zero) otherwise output diverges.

1.5.3 Low-pass filter

Now we turn into the general case.

Y = H(z)X, H(z) =
α

1− γz−1
.

Frequency Response Frequency response is

H(ei
2πf
Fs ) =



α

1− γ
· 1

1 + i2πf · γ/(1− γ) · Ts
(f ≪ Fs),

α

1 + iγ
(f = 1

4Fs),

α

1 + γ
(f = 1

2Fs).

Gain changes from α/(1 − γ) at f = 0 to α/(1 + γ) at f = Fs/2. In case γ is real
and f ≪ Fs, this behaves as first order low-pass filter of time constant Tsγ/(1− γ), or
cut-off frequency of Fs/2π · (1− γ)/γ.
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Let’s see the difference equation. Y = H(z)X becomes

(1− γz−1)Y = αX → y[n] = γ y[n− 1] + αx[n].

If we set α = (1− γ) to get unity gain at f = 0,

y[n] = γ y[n− 1] + (1− γ)x[n].

New y is at the point which which previous y and x by the ratio of (1− γ) : γ.

Impulse response Recalling that impulse function is unity in z-space

Y = H(x)X → Y =
α

1− γz−1
· 1.

We have seen the inverse z-Transform of this before. It was a geometric progression.

y[n] = αγn.

This is either exponential decay if γ is real, or damped oscillation if γ has non-zero
imaginary part. If γ has non-zero imaginary part, H(z) has to have a term with its
complex conjugate γ∗ to get real output from real input. This is guaranteed by the
fact that γ is a root of a polynomial of real coefficient.

Step response Step response is a special case of sine wave response we will see
next. The result is

y[n] =
α

1− γ

(
1− γn+1

)
.

Sine wave response With θ = 2πf/Fs,

Y =
α

1− γz−1
· 1

1− eiθz−1
.

Recalling that

1

1− γ1z−1
· 1

1− γ2z−1
=

1

γ1 − γ2

(
γ1

1− γ1z−1
− γ2

1− γ2z−1

)
,

we get

Y =
α

γ − eiθ

(
γ

1− γz−1
− eiθ

1− eiθz−1

)
,

=
α eiθ

eiθ − γ
· 1

1− eiθz−1
− αγ

eiθ − γ
· 1

1− γz−1
.
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In n-space

y[n] =
α eiθn

1− γ e−iθ
− αγn+1

eiθ − γ
.

If we put θ = 0, we get step response. After long run where n is sufficiently large, we
get y[n] = H(e−iθ) eiθn, which is anticipated from the frequency response.

How about the step response where γ = 1 and α = 1, do we get integrator?

y[n] =
eiθn

1− e−iθ
− 1

eiθ − 1
=

1− eiθ(n+1)

1− eiθ
=

n∑
n=0

eiθn.

And for θ ≪ 1, using exp(iθ) ∼ 1 + iθ, we get

y[n] =
eiθn

iθ
− 1

iθ
=

∫ n

0
eiθn dn.

1.5.4 FIR approximation

Consider following Taylor expansion

1

1− γz−1
= 1 + γz−1 + γ2z−2 + γ3z−3 + ...

We see that contribution weight from the past is getting less and less. Therefore we
can cut-off higher order terms

1

1− γz−1
∼ 1 + γz−1 + γ2z−2 + ...+ γmz−m.

The good news is now response function is polynomial of z−1, which does not have
pole outside the unit circle, no instability to worry about. It is guaranteed that bound
input gives bound output. The bad news is we need to memorize many past inputs
and calculate many terms to update y. In contrast, we only needed to memorize one
last state and to calculate only two terms in the original case. Impulse response is

y[n] =


0 (n < 0),

αγn (0 ≤ n ≤ m),

0 (n > m).

This approximation is equivalent to cutting off impulse response within finite number
of time points. (Finite Impulse Response).

1.5.5 Feedback equation

Eq. (1) can be written
Y = A(z)Y +B(z)X.

Y =
B(z)

1−A(z)
X.

X B(z)

A(z)

Y
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1.6 Relation with continuous time response

For continuous time linear systems, response function Hc(s) is Laplace transform of
impulse response hc(t) of the system and they can be written as follows:

Hc(s) =
N∑
k=1

ak τk
1 + s τk

, hc(t) =
N∑
k=1

ak e
−t/τk .

Here, we would like to convert this response function into z-space.
Recalling that

y(t) =

∫ t

−∞
hc(t− τ)x(τ) dτ,

in case signals are moving slowly compared to Ts, we get, by rewriting integral to
summation,

y(nTs) = Ts

n∑
m=−∞

hc(nTs −mTs)x(mTs).

Comparing this with

y[n] =
n∑

m=−∞
h[n−m]x[m],

we find
h[n] = Ts hc(nTs).

Therefore for signals moving slowly compared to Ts,

h[n] = Ts hc(nTs) = Ts

N∑
k=1

ak e
−nTs/τk =

N∑
k=1

ak Ts

(
e−Ts/τk

)n
.

In z-space,

H(z) =
N∑
k=1

ak Ts

1 − e−Ts/τk z−1
.

Example

Hc(s) =
a τ

1 + s τ
→ H(z) =

a Ts

1− e−Ts/τz−1
.

In case aτ = G,

H(z) = G · Ts/τ

1− e−Ts/τz−1
.
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1.7 Discrete time analog components

We’d like to obtain response functions of discrete time analog components to find im-
plementations of systems described in z-space. These components have two operating
phases, one is sampling (or tracking) phase and the other is amplification (or hold)
phase and we take output y[n] at the end of hold phase. We customarily call sampling
and hold phase ϕ1 and ϕ2, respectively. Below shows a typical sample and hold circuit.
ϕ0 is the time reference, charge at C1 is sampled at the falling edge of ϕ0.

Vi

ϕ1

ϕ2

Vc

C1
Vx

C

ϕ2

ϕ1

Vc

Vo

A

Vc

ϕ0

Vc

ϕ0

ϕ1

ϕ2

The problem is that we take output y[n] at the end of ϕ2, but input x is sampled at
the end of ϕ1, only half clock cycle before the current time point n. We use x[n−1/2] in
n-space, and z−1/2X in z-space to denote this half clock cycle delay. While there is no
such thing like frequency response of z−1/2, there is a way to get reasonable response
function (rational function of z−1) for a system as a whole. For example, response
function of a simple sample-and-hold circuit would be z−1/2 (simple half clock delay),
however for two cascaded sampled-and-hold driven by ϕ̄ and ϕ, the one would be z−1,
which has reasonable response function.

1.7.1 Sample and hold

Opamp adjusts its output voltage to keep its input terminal at the ground level (Vc).
Therefore the output voltage y is determined by the charge on the capacitor placed
in between opamp’s input and output in ϕ2. Let’s say capacitance of this capacitor is
C. This capacitor is discharged in ϕ1 and charged by the opamp in ϕ2. Capacitors
connected to inputs, C1, C2, are discharged in one phase and charged to corresponding
input level in the other phase. Here we show two input case. For one input, we can
simply put C2 = 0. Extending three or more inputs is straightforward.

X1

ϕ1

ϕ2

Vc

C1
Vx

X2

ϕ1

ϕ2

Vc

C2

C

ϕ2

ϕ1

Vc

Y

A

Vc

ϕ0

Vc

X1

ϕ1

ϕ2

Vc

C1
Vx

Vc

ϕ1

ϕ2

X2

C2

C

ϕ2

ϕ1

Vc

Y

A

Vc

ϕ0

Vc
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In case both C1 and C2 is charged at ϕ1 (left):

y[n] =
1

C
(C1 x1[n− 1/2] + C2 x2[n− 1/2]) ,

Y = z−1/2

(
C1

C
X1 +

C2

C
X2

)
.

X2

X1

C1/C

C2/C

z−1/2 Y

In case C2 is charged at ϕ2 (right):

y[n] =
1

C
(C1 x1[n− 1/2]− C2 x2[n]) ,

Y = z−1/2 C1

C
X1 −

C2

C
X2.

X2

X1

C1/C

−C2/C

z−1/2 Y

If C1 = C2, they can be merged into one.

Y =
C1

C

(
z−1/2X1 −X2

)
.

X1

ϕ1

ϕ2

X2

C1
Vx

C

ϕ2

ϕ1

Vc

Y

A

Vc

ϕ0

Vc

1.7.2 Integrator

In integrator, we do not discharge output capacitor C by disconnecting ϕ1 switch from
C. Charge in C kept unchanged during ϕ1. Therefore output voltage y[n] is its previous
value plus input.

X1

ϕ1

ϕ2

Vc

C1
Vx

X2

ϕ1

ϕ2

Vc

C2

C

ϕ2

Y

A

Vc

ϕ0

Vc

X1

ϕ1

ϕ2

Vc

C1
Vx

Vc

ϕ1

ϕ2

X2

C2

C

ϕ2

Y

A

Vc

ϕ0

Vc
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In case both C1 and C2 is charged at ϕ1 like shown in above left:

y[n] = y[n− 1] +
1

C
(C1 x1[n− 1/2] + C2 x2[n− 1/2]) ,

Y = z−1 Y +
z−1/2

C
(C1X1 + C2X2) .

Therefore

Y =
z−1/2

1− z−1
· C1

C
X1 +

z−1/2

1− z−1
· C2

C
X2.

X2

X1

C1/C

C2/C

z−1/2

1− z−1
Y

Similarly, in case C2 is charged at ϕ2 like shown in the right:

Y =
z−1/2

1− z−1
· C1

C
X1 −

1

1− z−1
· C2

C
X2.

X2

X1

C1/C

−C2/C

z−1/2
1

1− z−1 Y

And in case C1 = C2, they can be merged into one.

Y =
C1

C
· 1

1− z−1

(
z−1/2X1 −X2

)
.

X1

ϕ1

ϕ2

X2

C1
Vx

C

ϕ2

Y

A

Vc

ϕ0

Vc

1.7.3 AD converter

Input voltage x is digitized to output y. We think quantization error e = y−x is added
to x.

y[n] = x[n− 1/2] + e[n− 1/2].

In z-space,
Y = z−1/2(X + E).

Signal flow graph is

X

E

z−1/2 Y

Mean square of quantization error
〈
e2
〉
is △2/12, where △ is the least significant bit

(LSB) of the AD converter.

It is widely believed that as the number of quantization level of the AD converter
is getting larger the correlation between X and E is getting less and that E can be
treated as white noise.
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1.7.4 Non-overlap clock generator

Below left shows a circuit which generates non-overlap clock shown in the right. In a
practical implementation, negative logic INV gate may be replaced by negative logic
NAND gate for “enable” function.

ϕ0 ϕ1

ϕ2

ϕ0

ϕ1

ϕ2

For high speed application, we likely need carefully sized transister level implementation
for desired driving ability and non-overlap time.
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1.8 Our signals

We have been concerned with response functions of discrete time linear systems, where
Fourier transform of impulse response, frequency response function, are always well
defined. Frequency response functions are always periodic with the period of Fs, since
we cannot tell frequency f from f plus any integer multiple of Fs. Because of this,
we do not want to treat such two frequencies at the same time. We limit our signal’s
frequency component within a band of Fs centered at zero or integer multiple of Fs. In
case signal is real, this imposes another constraint to its frequency components. That
is, frequency component at frequency −f has to be complex conjugate of that of f ,
resulting independent frequency component is cut by half.

We usually regard our signal as infinite stream of data starting from infinite dis-
tant past to infinite distant future. However such functions are in general not square
integrable. Fourier transform of such a function is not well defined. To workaround,
we use finite data points and apply periodic boundary condition, which is what we are
actually doing all the time. In fact there’s no such thing like infinite data stream since
all things must have finite life time.

Even though it cannot be a reality, the idea of infinite data stream is very convenient
in theoretical study. We will look at this more in Section 1.9. In this section, we assume
our signal has Fourier transform, i.e., either finite or periodic.

1.8.1 Interpolation formula

Suppose that x(t) does not have any frequency component outside −Fs/2 < f < Fs/2,
in another words x(t) can be written with its Fourier transform Xc(f) like this:

x(t) =

∫ ∞

−∞
Xc(f) e

i2πft df =

∫ Fs/2

−Fs/2
Xc(f) e

i2πft df

Comparing this with discrete time Fourier transform pair (Ts = 1/Fs),

x(nTs) =
1

Fs

∫ Fs/2

−Fs/2
X(f) ei

2πf
Fs

n df, X(f) =
∞∑

n=−∞
x(nTs) e

−i 2πf
Fs

n,

we find, for frequencies −Fs/2 < f < Fs/2,

Xc(f) =
1

Fs
X(f).

Discrete time Fourier transform differs continuous time Fourier transform only by a
scaling factor Fs. We can reproduce x(t) completely from X(f) which can be obtained
from discrete time points, x(nTs), only. It is more convenient to write above like this

Xc(f) =
1

Fs
R(f)X(f), R(f) =

{
1 (−Fs/2 < f < Fs/2),

0 (otherwise).
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So that x(t) can be written with discrete time Fourier transform X(f) like this.

x(t) =

∫ ∞

−∞
Xc(f) e

i2πft df =
1

Fs

∫ ∞

−∞
R(f)X(f) ei2πft df

R(f) can also be written with its inverse transform r(t).

R(f) =

∫ ∞

−∞
r(t) e−i2πft dt

Therefore, by inserting this and definition of X(f) into above x(t) formula, we get

x(t) =
1

Fs

∫ ∞

−∞

∫ ∞

−∞
r(t′)e−i2πft′ dt′

∞∑
n=−∞

x[n] ei
2πf
Fs

n ei2πftdf,

=
1

Fs

∞∑
n=−∞

∫ ∞

−∞
r(t′)x[n]

∫ ∞

−∞
ei2πf(t−nTs−t′) df dt′,

=
1

Fs

∞∑
n=−∞

∫ ∞

−∞
r(t′)x[n] δ(t− nTs − t′) dt′,

=
1

Fs

∞∑
n=−∞

r(t− nTs)x[n].

Inverse transform of R(f) can be obtained easily1

r(t) =

∫ ∞

−∞
R(f) e−i2πft dt =

∫ Fs/2

−Fs/2
e−i2πft dt =

sin(πFst)

πt
. (2)

Therefore, x(t) can be calculated from discrete time points x[n] by

x(t) =

∞∑
n=−∞

x[n] · sinπFs(t− nTs)

πFs (t− nTs)
=

∞∑
n=−∞

x[n] · sinπ(Fs t− n)

π(Fs t− n)
.

Note that sin(πk)/πk = 0 if k is non-zero integer, if we put t = nTs into above,
it becomes x(nTs) = x[n] and that | sin(πk)/πk| becomes smaller and smaller as |k|
goes larger and larger, we can cut-off summation with a finite number of terms to get
approximated value of x(t).

Noise generator If we set a[n] at random with gaussian distribution,

x(t) =

∞∑
n=−∞

a[n] · sinπ(Ft− n)

π(Ft− n)
.

will give a band limited noise waveform within ±F/2.

1Since r(t) has finite value for t < 0, this filter is not causal.
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Down sampling Similarly, if frequency component of x(t) is concentrated within
kFs − Fs/2 < f < kFs + Fs/2, where k is integer, we get

x(t) =

∞∑
n=−∞

x[n] · e−i2πk(Fst−n) · sinπ(Fs t− n)

π(Fs t− n)
.

In this case, x(t) can not be real, since frequency component of a real function has
to be complex conjugate of that of frequency of opposite sign, but here, we only have
frequency component on one side. To get real x(t) we have to add image, (complex
conjugate at frequency of opposite sign). The result is

x(t) =
∞∑

n=−∞
x[n] · cos(2πk(Fst− n)) · sinπ(Fs t− n)

π(Fs t− n)
.

Periodic signal In case x(t) is periodic with period of T , i.e., x(t + T ) = x(t). It
only has discrete frequency components:

x(t) =
1

T

∞∑
k=−∞

Xc(k/T ) e
i 2πk

T
t, Xc(k/T ) =

∫ T/2

−T/2
x(t) e−i 2πk

T
t dt.

Comparing this with discrete time Fourier transform,

x(nTs) =
1

N

N/2−1/2∑
k=−N/2+1/2

X(k) ei
2πkn
N , X(k) =

N/2−1/2∑
n=−N/2+1/2

x(nTs) e
−i 2πkn

N ,

we find, if Xc(k/T ) is concentrated within −N/2 + 1/2 ≤ k ≤ N/2− 1/2,

1

T
Xc(k/T ) =

1

N
X(k) → Xc(k/T ) = TsX(k) =

1

Fs
X(k),

where we are sampling coherently, i.e., T = NTs. Therefore, x(t) can be expressed
with discrete time Fourier coefficients as

x(t) =
Ts

T

∞∑
k=−∞

R(k/T )X(k) ei
2πk
T

t =
1

Fs

N/2−1/2∑
n=−N/2+1/2

x[n] · r(t− nTs),

where R(f) is periodic ideal filter (R(f) = 1 for |f | < Fs/2, otherwise it is zero), and
r(t) is its Fourier transform:

R(k/T ) =

∫ T/2

−T/2
r(t) e−i 2πk

T
t dt, r(t) =

1

T

∞∑
k=−∞

R(k/T ) ei
2πk
T

t,

=
1

T

N/2−1/2∑
k=−N/2+1/2

ei
2πk
T

t =
1

T
·
sin

πNt

T

sin
πt

T

.

This result matches Eq. (2) with T → ∞ while keeping N/T = Fs constant.
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1.9 Power Spectral Density and Correlation

1.9.1 Power spectral density

As we have discussed earlier, if signal is infinite stream of data, it cannot have Fourier
transform, since such signals are not square integrable, i.e.,

∑
n x

∗[n]x[n] diverges.
However, we know our signals have meaningful mean square. Let’s start our discussion
from mean square of N points.

〈
x2
〉
N

=
1

N

N/2−1∑
n=−N/2

x∗[n]x[n]

For finite number of points, we have Fourier transform pair:

x[n] =
1

Fs

∫ Fs/2

−Fs/2
XN (f) ei

2πf
Fs

n df, XN (f) =

N/2−1∑
n=−N/2

x[n]e−i 2πf
Fs

n.

Inserting this into above yields

〈
x2
〉
N

=
1

N

N/2−1∑
n=−N/2

1

F 2
s

∫ Fs/2

−Fs/2

∫ Fs/2

−Fs/2
X∗

N (f ′)XN (f) ei
2π(−f ′+f)

Fs
n df ′df.

Recalling that
∑

n e
i 2πf

Fs
n has sharp peak at f = 0 and it becomes delta function with

N → ∞:

δ(f) =
1

Fs

∞∑
n=−∞

ei
2πf
Fs

n,

we find

lim
N→∞

〈
x2
〉
N

= lim
N→∞

1

Fs

∫ Fs/2

−Fs/2

X∗
N (f)XN (f)

N
df.

Let’s take ensemble average, assuming time average is equal to ensemble average,

〈
x2
〉
=

1

Fs

∫ Fs/2

−Fs/2
lim

N→∞

〈
X∗

N (f)XN (f)

N

〉
df =

1

Fs

∫ Fs/2

−Fs/2
Sx(f) df.

We call

Sx(f) = lim
N→∞

〈
X∗

N (f)XN (f)

N

〉
power spectral density. When we have meaningful mean square, we will have meaning-
ful power spectral density. Note that X∗

N (f)XN (f) is |XN (f)|2, but we leave it as it
is for later convenience. Since x(t) is infinite stream, i.e., there is no distinct reference
time point, we have lost phase information.
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1.9.2 Autocorrelation

Let’s calculate following quantity

lim
N→∞

1

Fs

∫ Fs/2

−Fs/2

X∗
N (f)XN (f)

N
ei

2πf
Fs

m df

= lim
N→∞

1

NFs

∫ Fs/2

−Fs/2

∑
n,n′

x∗[n′] ei
2πf
Fs

n′
x[n] e−i 2πf

Fs
nei

2πf
Fs

m df,

= lim
N→∞

1

N

∑
n,n′

x∗[n′]x[n]
1

Fs

∫ Fs/2

−Fs/2
ei

2πf
Fs

(m−n+n′) df,

= lim
N→∞

1

N

∑
n,n′

x∗[n′]x[n] δ[m− n+ n′],

= lim
N→∞

1

N

∑
n

x∗[n−m]x[n],

= lim
N→∞

⟨x∗[n−m]x[n]⟩N ,

where we have used

δ[m] =
1

Fs

∫ Fs/2

−Fs/2
ei

2πf
Fs

m df.

If we take ensemble average of this quantity, we see that Fourier transform of power
spectral density is autocorrelation and we use Cx[m] for it.

Cx[m] = ⟨x[n]x∗[n−m]⟩ = lim
N→∞

1

Fs

∫ Fs/2

−Fs/2

〈
X∗

N (f)XN (f)

N

〉
ei

2πf
Fs

m df,

=
1

Fs

∫ Fs/2

−Fs/2
Sx(f) e

i 2πf
Fs

m df.

Inversely, Fourier transform of autocorrelation is power spectral density.

Sx(f) =

∞∑
m=−∞

Cx[m] e−i 2πf
Fs

m

Cx[0] gives mean square by definition.

Cx[0] =
〈
x2
〉

In case x[n] is real, Cx[m] and Sx(f) is even function,

Cx[m] = Cx[−m], Sx(−f) = Sx(f).
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1.9.3 Correlation

Similarly, with

Sxy(f) = lim
N→∞

〈
Y ∗
N (f)XN (f)

N

〉
.

we can show follows.

Cxy[m] = ⟨x[n] y∗[n−m]⟩ = 1

Fs

∫ Fs/2

−Fs/2
Sxy(f) e

i 2πf
Fs

m df

Sxy(f) =

∞∑
m=−∞

Cxy[m] e−i 2πf
Fs

m

1.9.4 Composition of power spectral density

Suppose that we are observing a signal y[n] through a transfer function H and that
spectral density of y is known. Let’s say spectral density of y is Sy(f),

Sy(f) = lim
N→∞

〈
Y ∗
N (f)YN (f)

N

〉
,

and what we are observing is x, which is output of H.

X = H Y

Power spectral density Sx(f) is

Sx(f) = lim
N→∞

〈
X∗

N (f)XN (f)

N

〉
= lim

N→∞

〈
H∗(f)Y ∗

N (f) H(f)YN (f)

N

〉
.

Since H(f) is characteristic of the system and it is not subject to ensemble average,
we can bring it out.

Sx(f) = |H(f)|2 lim
N→∞

〈
Y ∗
N (f)YN (f)

N

〉
= |H(f)|2 Sy(f).

Similarly, when x is sum of two signals Y and Z which went through transfer function
F and G.

X = F Y +GZ

Power spectral density Sx(f) will be

Sx(f) = |F (f)|2 Sy(f) + |G(f)|2 Sz(f) + Re {F (f)G(f)Szy(f)}

In case Y and Z is independent, i.e., Szy = 0,

Sx(f) = |F (f)|2 Sy(f) + |G(f)|2 Sz(f).
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1.10 Delta Sigma Modulators

Let us consider an AD converter.

Y = X + E,

where X, Y , E is the analog input, the digital output and the quantization error,
respectively. If we, somehow, could get quantization error of the previous sample and
subtract it from the analog input, above becomes

Y = (X − z−1E) + E or Y = X + (1− z−1)E.

In the frequency domain, above becomes

Y (f) = X(f) + (1− e−i 2πf
Fs )E(f).

Suppose that E is white noise, i.e., no frequency dependence and no correlation to X,

|Y (f)|2 = |X(f)|2 + 4 sin2
πf

Fs
· |E|2.

Quantization error is suppressed at low frequencies. A devastating fact is that even if
Y is only 1bit, you can reproduce the input in digital domain. Below is a waveform of
X and Y .

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 10950  11000  11050  11100

ar
b.

n = t/Ts = F_s t

ds1  NFIN/NFFT=351/65536

Y
X

Y is vibrating rapidly as a result of high frequency component from E, low frequency
component should be identical to X as we will see it shortly. This is called delta-sigma
modulation. We place z−1 to the input for later convenience, z−1 by it self is just a
one clock delay, it does not change waveform of the input X.

Y = z−1X + (1− z−1)E.
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1.10.1 Noise shaping and oversampling

For L-th order, above would be

Y = z−LX + (1− z−1)LE.

Let us rewrite above as follows.

Y = HxX +HeE, Hx = z−L, He = (1− z−1)L.

Hx is called signal transfer function. He is called noise transfer function. Frequency
response of those are

Hx(e
i 2πf

Fs ) = e−i 2πf
Fs

L, He(e
i 2πf

Fs ) =
(
1− e−i 2πf

Fs

)L
.

∣∣∣Hx(e
i 2πf

Fs )
∣∣∣2 = 1

∣∣∣He(e
i 2πf

Fs )
∣∣∣2 = ∣∣∣∣(1− e−i 2πf

Fs

)L∣∣∣∣2 = (2 sin πf

Fs

)2L

.

Hx changes only phase, but He is high-pass filter, low frequency component of quan-
tization error is suppressed. |He| is proportional to f2L for f ≪ Fs, and it is 22L

at f = Fs/2. If we limit signal within a narrow band, say ±Fh, we can filter out
quantization error.

Let’s calculate available signal resolution. Here we assume that quantization error
can be treated as white noise. Which means that it does not have correlation with
the input, otherwise correlation term will show up in the power spectral density of the
output, and that power spectral density of quantization error Se(f) is flat. Mean square
of quantization error

〈
e2
〉
is △2/12, where △ is least significant bit of the quantizer

and its power spectral density is

Se(f) =
△2

12
· 1

Fs
.

Power of quantization error shows up at y within ±Fh is calculated as follows.

Pe =

∫ Fh

−Fh

∣∣∣He(e
i 2πf

Fs )
∣∣∣2 Se(f) df,

=

∫ Fh

−Fh

∣∣∣∣(1− e−i 2πf
Fs

)L∣∣∣∣2 df · △
2

12
· 1

Fs
,

=

∫ Fh

−Fh

(2 sin(πf/Fs))
2L df · △

2

12
· 1

Fs
.

Using the fact that Fh ≪ Fs and that sinx ∼ x for x ≪ 1 yields

Pe ∼
∫ Fh

−Fh

(2πf/Fs))
2L df · △

2

12
· 1

Fs
=

△2

6
· 1

2π
· (2πFh/Fs)

2L+1

2L+ 1
.
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Ratio between the width of the modulator’s nyquist band (±Fs/2) and the width of
this limited band (±Fh) is called oversampling ratio M = Fs/2Fh. With oversampling
ratio M , above becomes

Pe ∼ △2

12
· π2L

2L+ 1
· 1

M2L+1
.

Recalling that full swing sinusoidal signal power, Ps, is

Ps =

(
△ ·K
2
√
2

)2

,

where K is number of quantization levels and △·K is full-scale of the quantizer, signal
to noise ratio is calculated to be

Signal to noise ratio =
Ps

Pe
=

3

2
·K2 · (2L+ 1)(M2L+1)

π2L
.
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]
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1.10.2 Switched capacitor implementation

Now we would like to implement this modulator using switched capacitor circuits,
namely an AD converter and delayed integrators. First, Y is digital output, it must be
the output of an ADC and we would connect it to X and Y though response function
A and B like shown below.

X A(z) z−1/2 Y

B(z)

E

X1

X1 = A(z)X +B(z)Y

Y = z−1/2 (X1 + E)

Eliminating X1 yields

Y =
z−1/2A(x)X

1− z−1/2B(z)
+

z−1/2E

1− z−1/2B(z)
.

Here z−1/2E is the quantization noise half clock cycle prior to Y , i.e., z−1/2E is the
quantization noise actually injected. Therefore noise transfer function is the coefficient
of z−1/2E, and we want it to be (1− z−1)L.

1

1− z−1/2B(z)
= (1− z−1)L.

Therefore signal transfer function, coefficient of X, will be

Hx(z) = z−1/2(1− z−1)LA(z),

and we want it to be z−L, (or at least |Hx(z)| = 1). Therefore

A(z) =
z1/2z−L

(1− z−1)L
, B(z) = z1/2

(
1− 1

(1− z−1)L

)
.

and

X1 =
z1/2z−L

(1− z−1)L
X + z1/2

(
1− 1

(1− z−1)L

)
Y.

First order modulator Inserting L = 1 yields,

X1 =
z−1/2

1− z−1
(X − Y ) .

Second order modulator Similarly, inserting L = 2 yields,

X1 =
z−1/2 z−1

(1− z−1)2
X +

−2z−1/2 + z−1/2z−1

(1− z−1)2
Y.
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From here factor out delayed integrator one after another to yield feedback equation:

X1 =
z−1/2

1− z−1

(
z−1

1− z−1
X +

−2 + z−1

1− z−1
Y

)
,

=
z−1/2

1− z−1

(
z−1/2

1− z−1

(
z−1/2X + z−1/2 Y

)
− 2

1− z−1
Y

)
,

=
z−1/2

1− z−1

(
z−1/2

1− z−1

(
z−1/2X − z−1/2 Y

)
− 2Y

)
,

where we used,
1

1− z−1
= 1 +

z−1

1− z−1

to get the last expression. This can be

X3 = z−1/2X, (Sample and hold)

X2 =
z−1/2

1− z−1
(X3 − Y1) , (1st stage)

X1 =
z−1/2

1− z−1
(X2 − 2Y ) , (2nd stage)

Y1 = z−1/2 Y. (Latch)

We have a S/H for X and a latch for Y before going to the first stage integrator, which
uses Y at ϕ1.

Another possibility is

X1 =
z−1/2

1− z−1

(
z−1/2

1− z−1
z−1/2X − 1

1− z−1
z−1 Y − 2Y

)
,

or

X3 = z−1/2X, (Sample and hold)

X2 =
z−1/2

1− z−1
X3 −

1

1− z−1
Y2, (1st stage)

X1 =
z−1/2

1− z−1
(X2 − 2Y ) ,

=
z−1/2

1− z−1
X2 −

1

1− z−1
· 2Y1, (2nd stage)

Y1 = z−1/2 Y, (Latch)

Y2 = z−1/2 Y1, (Latch)
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Figure 1: A switched capacitor implementation of second order delta-sigma modulator. X1

is followed by a 1bit ADC of which output is Y . Y1 and Y2 is half clock and full clock delay
of Y , respectively.
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Circuit diagrams are shown in Figure 1. X1 is followed by an ADC and its output is
Y . Node Y has valid data on ϕ1. Y1 and Y2 is half clock cycle delay and full clock
cycle delay of Y , respectively.

Yet another possibility is

X3 = z−1/2X, (Sample and hold)

1

2
X2 =

1

2

(
z−1/2

1− z−1
X3 −

1

1− z−1
Y2

)
, (1st stage)

X1 =
z−1/2

1− z−1
(X2 − 2Y ) ,

= 2

(
z−1/2

1− z−1
· 1
2
X2 −

1

1− z−1
· Y1

)
, (2nd stage)

Y1 = z−1/2 Y, (Latch)

Y2 = z−1/2 Y1, (Latch)

Circuit diagrams are shown in Figure 2. Switch network gets simplified compared to the
first one while signal swing of the second stage gets half. Reduced swing potentially
impacts thermal noise performance (power consumption), while we’d expect better
linearity of the second stage output. Choice of two implementation would depend on
external requirements (or priority).

1.10.3 Simulation

In the noise shaping calculation, we have assumed quantization error can be treated
as white noise without basis. In fact this assumption is only reasonable when we have
many levels of quantization. Apparently when our ADC has only few quantization
levels there will be good correlation between the input of the ADC and the quantization
error. Here we simulate the first and the second order modulator with only two levels
of quantization (K = 2, or 1bit). We will see that there still be large correlation in the
first order modulator. However it gets much less in the second order modulator.
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Figure 2: Second possibility of switched capacitor implementation of second order delta-
sigma modulator. X1 is followed by a 1bit ADC of which output is Y . Y1 and Y2 is half
clock and full clock delay of Y , respectively. Switch network gets simplified compared to the
first one while signal swing of the second stage gets half. Reduced swing potentially impacts
thermal noise performance (power consumption), while we’d expect better linearity of the
second stage output. Choice of two implementation would depend on external requirements
(or priority).
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Figure 3: Simulated waveform for first order (left, ds1) and second order (right, ds2) delta-
sigma modulators. Top plots are node voltages, x[n], x1[n], etc. Bottom plots are e[n]. With
the same input swing and reference level, ds2’s node voltages swing much wider than that
of ds1. e[n] is vibrating rapidly for both cases. However there’s obvious harmonic content
in ds1, while ds2 has fairly randomized error with obvious fundamental content.
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Figure 4: Power spectral density Sy(f) for first order (left, ds1) and second order (right,
ds2) delta-sigma modulators. Top plots are single shot input. Bottom plots are average of
100 Monte Carlo samples (phase of input sine wave is randomly chosen). While ds2 shows
tight and nice f 2L behavior in the bottom plot, ds1 still has a lot of grasses, which suggests
strong correlation between input X and quantization error E.
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Appendix A Useful Formula

Parallel impedance operator

(r1//r2) =
1

1/r1 + 1/r2
=

r1r2
r1 + r2

, (r1//r2//r3) =
1

1/r1 + 1/r2 + 1/r3
=

r1r2r3
r1 + r2 + r3

(r1//r2) = (r2//r1),
1

(r1//r2)
+

1

r3
=

1

(r1//r2//r3)
, (r1//c1) =

r1
1 + s r1c1

Minimum value

min

(
A

x
+Bx

)
= 2

√
AB, xmin =

√
A

B
.

Integral ∫ ∞

0

dω/2π

1 + (ω/ω0)
2 =

ω0

2π
tan−1

(
ω

ω0

)∣∣∣∣∞
0

=
1

4
ω0∫ ∞

ωs

dω

ω(1 + (ω/ω0)2)
=

1

2
ln

(ω/ω0)
2

1 + (ω/ω0)2

∣∣∣∣∞
ωs

=
1

2
ln

1 + (ωs/ω0)
2

(ωs/ω0)2

Two pole response function and its impulse response

vo/vi =
1

1 + s b+ s2 a
=

1

(1 + s τ⊕)(1 + s τ⊖)
(a > 0, b > 0)

1/τ⊕,⊖ =
b±

√
b2 − 4a

2a
=

b

2a

(
1±

√
1− 4a/b2

)
Discriminant 4a/b2:

4a/b2 < 1 → Exponential settling (overshooting)

= 1 → Critical damping

> 1 → Ringing

If 4a/b2 ≪ 1,
1/τ⊕ = b/a− 1/b, 1/τ⊖ = 1/b

Canonical form of two pole amplifier

A(s) =
N

Q+ sB + s2A
=

A0

(1 + s τAA0)(1 + s τ⊕)

If 4AQ/B2 ≪ 1:

A0 = N/Q, τA = B/N, 1/τ⊕ = B/A−Q/B
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Laplace transform

L{δ(t)} = 1, L{1} =
1

s
, L{e−t/τ1} =

τ1
1 + s τ1

, L{t/τ1 e−t/τ1} =
τ1

(1 + s τ1)2
.

1

(1 + s τ1)(1 + s τ2)
=

1

τ1 − τ2

(
τ1

1 + s τ1
− τ2

1 + s τ2

)
s

(1 + s τ1)(1 + s τ2)
= − 1

τ1 − τ2

(
1

τ1
· τ1
1 + s τ1

− 1

τ2
· τ2
1 + s τ2

)
1 + s τ3

(1 + s τ1)(1 + s τ2)
=

1

τ1 − τ2

(
τ1 − τ3

τ1
· τ1
1 + s τ1

− τ2 − τ3
τ2

· τ2
1 + s τ2

)
s

(1 + s τ1)2
=

1

τ21

(
τ1

1 + s τ1
− τ1

(1 + s τ1)2

)
1

s (1 + s τ1)
=

1

s
− τ1

1 + s τ1

1

s (1 + s τ1)(1 + s τ2)
=

1

s
− τ1

τ1 − τ2
· τ1
1 + s τ1

+
τ2

τ1 − τ2
· τ2
1 + s τ2

1

s (1 + s τ1)2
=

1

s
− τ1

1 + s τ1
− τ1

(1 + s τ1)2

1 + s τ3
s (1 + s τ1)(1 + s τ2)

=
1

s
− τ1 − τ3

τ1 − τ2
· τ1
1 + s τ1

+
τ2 − τ3
τ1 − τ2

· τ2
1 + s τ2

Approximation If τ1 ≫ τ2,

s

(1 + s τ1)(1 + s τ2)
∼ 1

τ1τ2

(
τ2

1 + s τ2
− τ2

τ1
· τ1
1 + s τ1

)
1

s (1 + s τ1)(1 + s τ2)
∼ 1

s
− τ1

1 + s τ1
+

τ2
τ1

· τ2
1 + s τ2
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