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Abstract

This document has two sections. The first is about mathematics tools to treat noise
and the second is physics of thermal noise.

In Section 1, we will first review convenient mathematics concepts how to treat
noise in electrical circuits, namely noise spectral density and autocorrelation. When
we introduce noise spectral density, separate application of time average and ensemble
average makes it easier to understand those concepts. Then build a few convenient
formulae to treat transient behavior after a noise source turns on, which is common
situation in discrete time systems. These formulae make it possible to estimate total
noise of discrete time circuits (such as track and hold) by AC noise analysis.

In Section 2, we will go over some physics of thermal noise. We first derive Nyquist
formula from two perspective. One is electrical circuit (macroscopic) point of view.
The other is (classical) microscopic point of view. Then, we will learn relation between
thermal noise and diffusion phenomena and behavior of a particle consisting gas, which
gives some basis of mean free path model. Finally, we will see “shot noise” in semicon-
ductor can also be understood as noise of diffusion current. In addition, we will briefly
go over noise of electromagnetic wave, black-body radiation.

1



Contents

1 Noise Spectrum and Integrated Noise 4
1.1 Measurement and average . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Noise spectral density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Noise spectral density and autocorrelation . . . . . . . . . . . . . . . . . 9
1.4 Composition of noise spectral density . . . . . . . . . . . . . . . . . . . . 12
1.5 Equivalent noise resistance and noise factor . . . . . . . . . . . . . . . . 17
1.6 Origin of white noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Transient behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7.1 Frequency factor and effective bandwidth . . . . . . . . . . . . . 19
1.7.2 First order transfer function . . . . . . . . . . . . . . . . . . . . . 21
1.7.3 Second order transfer function . . . . . . . . . . . . . . . . . . . 23
1.7.4 Flicker noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 A Few Topics on Thermal Noise 28
2.1 Macroscopic derivation of Nyquist formula . . . . . . . . . . . . . . . . . 28

2.1.1 Statistical mechanics of tank circuit . . . . . . . . . . . . . . . . 28
2.1.2 Damped oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.3 Damped resonator . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.4 Equivalent circuit for impedance . . . . . . . . . . . . . . . . . . 31

2.2 Microscopic derivation of Nyquist formula . . . . . . . . . . . . . . . . . 33
2.2.1 Macroscopic quantities in terms of microscopic quantities . . . . 33
2.2.2 Random agitation force . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Electromotive force . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.4 Noise current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.5 Drift current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.6 Diffusion phenomena and Nernst-Einstein relation . . . . . . . . 36
2.2.7 Diffusion constant and carrier velocity . . . . . . . . . . . . . . . 37
2.2.8 Mean free time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Nyquist’s derivation of Nyquist formula . . . . . . . . . . . . . . . . . . 40
2.4 Net current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Semiconductor noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Shot noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.2 Diffusion current noise . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Electromagnetic wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Appendices 46

Appendix A Random Walk and Diffusion 46

2



Appendix B Black-body Radiation 47
B.1 Gas equation of electromagnetic wave . . . . . . . . . . . . . . . . . . . 47
B.2 Stephan-Boltzmann Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.3 Wien’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.4 Black-body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Appendix C Isotropic Electromagnetic wave 50
C.1 Periodic boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . 50
C.2 Plane wave solution for electromagnetic field . . . . . . . . . . . . . . . 50
C.3 Energy/Momentum flow and pressure . . . . . . . . . . . . . . . . . . . 53
C.4 Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Appendix D Details of Eq. (11) 56

Appendix E Noise of RLC resonator 57

Appendix F Useful Formula 58

3



1 Noise Spectrum and Integrated Noise

In the linear response theory, our signals are either finite (impulse response) or periodic
(frequency response). However noise is infinite (not periodic), we can not apply our
linear response theory to noise as it is. But the good news is that noise is usually
small and its mean square is finite. For small quantities, we expect the system respond
linearly. We can use most of things we had learn in linear response theory. In this
section we will extend linear response theory to deal with infinite stream such as noise.

1.1 Measurement and average

Suppose that we sample an output (either voltage or current) of a system for N times
during time period of T and assume that the system is in the same state (which
characterizes fluctuation at the output) during that period. Let’s say v(tn) is sampled
value for n-th sample taken at tn (n = [1, N ]).1 We take average of sampled value as
the value of the output,

〈v(tn)〉N =
1

N

N∑
n=1

v(tn),

and take difference between the value of output and sampled value as noise, i.e.,

v(tn) = 〈v(tn)〉N + x(tn),

where x(tn) is noise component of the output. Therefore, average of noise component
is always zero by definition:

〈x(tn)〉N = 0.

This is how we measure noise. However, following idealized averages (time average
and ensemble average) are more convenient for theoretical study. The concept of two
averages are very different, but it is almost always assumed that they give the same
result. Because of this a lot of literature does not distinguish these averages but the
author believes it makes much easier to understand the theory if we distinguish them
strictly when we construct the theory.

Ensemble average We can think of a lot of replicated system at the same time
and take average over systems instead of repeated measurements. Average over a lot
of replicated systems is called ensemble average. We denote ensemble average as

〈
x2
〉
.

1 Time points tn are not necessarily equally spaced, they only needs to be almost uniformly distributed.

4



Time average Imagine that we could monitor the output over time period of T
continuously. We can define noise component in similar way,

v(t) = 〈v(t)〉T + x(t),

where

〈v(t)〉T =
1

T

∫ T/2

−T/2
v(t) dt.

Therefore time average of noise component is zero by definition:

〈x(t)〉T = 0.

1.2 Noise spectral density

Imagine that we could monitor the output over time period of T continuously. In this
case, we can write noise component x(t) in Fourier series:

x(t) =

∞∑
n=−∞

1

T
Xn e

i 2πn
T
t, Xn =

∫ T/2

−T/2
x(t) e−i

2πn
T
t dt. (1)

Since x(t) is real number, changing sign of frequency gives complex conjugate:

X−n = X∗n.

X0 is zero, since average of noise is zero:2

X0 = T 〈x(t)〉T = 0.

We are interested in mean square. Using above Fourier series,

〈
x2(t)

〉
T

=
1

T

∫ T/2

−T/2
x(t)x(t) dt,

=
1

T

∫ T/2

−T/2

∞∑
n=−∞

∞∑
m=−∞

XnXm

T 2
ei

2π(n+m)
T

t dt,

=
1

T

∫ T/2

−T/2

∞∑
n=−∞

∞∑
m=−∞

X∗nXm

T 2
ei

2π(m−n)
T

t dt. (n→ −n)

Recalling that

δn,m =
1

T

∫ T/2

−T/2
ei

2π(m−n)
T

tdt,

2We need to be careful about this when we do T →∞.

5



we get 〈
x2(t)

〉
T

=

∞∑
n=−∞

X∗nXn

T
· 1

T
.

Note that we do not need phase information of Fourier coefficients to calculate mean
square (X∗X = |X|2). Recalling that X0 = 0 and that X−n = X∗n, above can be

〈
x2(t)

〉
T

= 2
∞∑
n=1

X∗nXn

T
· 1

T
.

Taking ensemble average yields

〈
x2
〉

= 2

∞∑
n=1

〈
X∗nXn

T

〉
· 1

T
.

Mean square noise is decomposed into frequency components. The right hand side can
be studied by frequency domain measurement (e.g. spectroscopy) and time period T
corresponds to frequency resolution 1/T . If there is a smooth function S(f) which
satisfies 〈

X∗nXn

T

〉
= S(n/T ),〈

x2
〉

is approximately written as,〈
x2
〉
∼ 2

∫ ∞
1/2T

S(f) df. (2)

S(f) ([V2/Hz] or [A2/Hz]) is called (double sided) noise spectral density. We most
often use the term noise spectral density for single sided one, i.e., 2S(f) is the noise
spectral density. Mean square noise calculated in the way expressed in Eq. (2) is called
integrated noise. And when we just say noise, it likely refers noise spectral density.

Let’s take a look at some known cases.

Example: RC low-pass filter S(f) [V2/Hz] for RC low-pass filter is known to
be,3

2S(f) =
4kΘR

1 + (2πf RC)2
,

where Θ is absolute temperature and k is Boltzmann constant. Note that in this section
we use Θ for temperature because we are using T for another meaning. Using∫

dω/2π

1 + (ω/ω0)
2 =

ω0

2π
arctan

ω

ω0
,

3 We will derive this formula later in Section 1.4.
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mean square noise:

〈
x2
〉

=

∫ ∞
1/2T

2S(f) df =
kΘ

C

(
1− 2

π
arctan 2π

1

2T
RC

)
.

Recalling that arctanx ∼ x for x� 1,

〈
x2
〉
∼ kΘ

C

(
1− 2RC

T

)
∼ kΘ

C
(T � RC) .

This can also be written with F = 1/T as,

〈
x2
〉
∼ kΘ

C
− 4kΘRF/2.

If we spend long time (T/RC � 1) for a measurement, mean square noise is insensitive
to T . However if samples are concentrated within shorter time period we see smaller
mean square noise (frequency component lower than F/2 falls into DC component).
Figure 1 shows this situation.

Example: flicker noise Another example is flicker noise followed by noiseless
low-pass filter of cut-off frequency f0:

2S(f) =
K

f
· 1

1 + (f/f0)2
,

where K is flicker noise coefficient (constant over f). Using∫
1

f
· 1

1 + (f/f0)
2 df =

1

2
ln

(f/f0)
2

1 + (f/f0)
2 ,

mean square noise:

〈
x2
〉

=

∫ ∞
F/2

K

f
· 1

1 + (f/f0)
2 df =

K

2
ln

1 +
(
F/2
f0

)2
(
F/2
f0

)2 ,

where F = 1/T . Note that mean square diverges as T →∞, i.e., the longer we spend
for a measurement the more we get noise. However this divergence is mild (logarithm).
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Figure 1: Simulated output waveform of RC low-pass filter for a few different time scale.
For shorter period of time, we see less noise component (because high frequency component
is filtered) and averaged value differs different time point of measurement. For longer time
period, average gets closer to zero and mean square does not depend much on starting point
of measurement.
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1.3 Noise spectral density and autocorrelation

Eq. (2) becomes exact with T → ∞. With this limit, Fourier series become Fourier
integral:

x(t) = lim
T→∞

∫ ∞
−∞

XT (f) ei 2πft df, XT (f) =

∫ T/2

−T/2
x(t) e−i 2πft dt. (3)

The reason why we have T explicitly is that x(t) is in fact not square integrable
(
∫∞
−∞ |x(t)|2dt diverges). Fourier transform of x(t) is not well defined. However, what

we want to calculate here is mean square, which is known to be finite. Convergence is
established by taking limit T → ∞ at very last. That’s said, just as previous section,
we see that mean square is decomposed into frequency components:

lim
T→∞

〈
x2(t)

〉
T

= lim
T→∞

1

T

∫ T/2

−T/2
x(t)x(t) dt,

= lim
T→∞

1

T

∫ T/2

−T/2

∫ ∞
−∞

∫ ∞
−∞

XT (f)XT (f ′) ei 2π(f+f
′)t dfdf ′dt,

= lim
T→∞

∫ ∞
−∞

X∗T (f)XT (f)

T
df,

where we have used

δ(f − f ′) =

∫ ∞
−∞

ei 2π(f−f
′)t dt.

We define spectral density S(f) by taking ensemble average of above as follows,

〈
x2
〉

=

∫ ∞
−∞

S(f) df, S(f) = lim
T→∞

〈
X∗T (f)XT (f)

T

〉
.

Note that S(f) = S(−f) since XT (−f) = X∗T (f). Therefore mean square noise can be
calculated positive frequency only:

〈
x2
〉

= 2

∫ ∞
0

S(f) df.
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Let’s take a look at following Fourier transform.

lim
T→∞

∫ ∞
−∞

X∗T (f)XT (f)

T
ei 2πfτdf

= lim
T→∞

1

T

∫ ∞
−∞

∫ T/2

−T/2

∫ T/2

−T/2
x(t)x(t′)ei 2πf(t−t

′+τ)dtdt′df,

= lim
T→∞

1

T

∫ T/2

−T/2

∫ T/2

−T/2
x(t)x(t′)δ(t− t′ + τ)dtdt′,

= lim
T→∞

1

T

∫ T/2

−T/2
x(t)x(t− τ)dt,

= lim
T→∞

〈x(t)x(t− τ)〉T .

This is autocorrelation. Therefore by taking ensemble average of above, it can be said
that Fourier transform of spectral density is autocorrelation:

〈x(t)x(t− τ)〉 =

∫ ∞
−∞

S(f) ei 2πfτ df.

Spectral density can be calculated from autocorrelation:

S(f) =

∫ ∞
−∞
〈x(t)x(t− τ)〉 ei 2πfτ dτ.

Autocorrelation can be found by analyzing time evolution of random process on the
system in question.

We use φ(τ) for autocorrelation not only for shorthand, but also to put emphasis
on the fact that autocorrelation is a function of τ :

φ(τ) = 〈x(t)x(t− τ)〉 .

φ(τ) is real and φ(0) is mean square by definition:

φ(0) = 〈x(t)x(t)〉 =
〈
x2
〉
.

It is unlikely that x at distant past affects present x, nor present x affects x at distant
future, i.e.,

φ(±∞) = lim
τ→±∞

〈x(t)x(t− τ)〉 = 0.

S(f) is positive real, and also even function, i.e.,

S(f) > 0, S(−f) = S(f).

10



We have just learned autocorrelation is Fourier transform of spectral density, vice versa:

φ(τ) =

∫ ∞
−∞

S(f) ei 2πfτ df, S(f) =

∫ ∞
−∞

φ(τ) e−i 2πfτ dτ.

Therefore, φ(τ) is even function because S(f) is even function:

φ(τ) = φ(−τ).

Example 1: For a system of which autocorrelation is delta function:

〈x(t)x(t− τ)〉 = K δ(τ).

Spectral density is flat:

S(f) =

∫ ∞
−∞

Kδ(τ) ei 2πfτ dτ = K.

Delta function autocorrelation represents memory less random process. Therefore if a
system has flat noise spectrum, the noise is due to memory less random process.

Example 2: Spectral density [V2/Hz] of RC low-pass filter is

2S(f) =
4kΘR

1 + (2πfRC)2
.

Autocorrelation will be

φ(τ) =

∫ ∞
−∞

S(f) ei 2πfτ df =
kΘ

C
e−|τ |/RC .

The system would “forget its memory” after t = RC. If we look at the system in
the time resolution much larger than its specific time (RC), the behavior should look
as if it has delta function autocorrelation and indeed the spectral density is flat at
ω � 1/RC. φ(0) gives kΘ/C.

If the spectrum is concentrated in lower frequency, autocorrelation becomes broader.
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1.4 Composition of noise spectral density

Consider a system which has one noise source y of which spectral density Sy(f) is
known. Since noise is small, it is reasonable to assume that response of output x to
noise source y is linear. First, we write noise source and its response in Fourier series:

x(t) =
1

T

∞∑
n=−∞

XT (n/T ) ei
2πn
T
t, y(t) =

1

T

∞∑
n=−∞

YT (n/T ) ei
2πn
T
t.

YT (f) and Sy(f) has following relation:

lim
T→∞

〈
Y ∗T (f)YT (f)

T

〉
= Sy(f).

Since x(t) is linear response of y(t),

XT (f)/T = H(i 2πf)YT (f)/T → XT (f) = H(i 2πf)YT (f).

where H(s) is transfer function, Laplace transform of impulse response. Therefore,
noise spectral density at output:〈

X∗T XT

T

〉
=

〈
H∗Y ∗T HYT

T

〉
= |H|2

〈
Y ∗T YT
T

〉
.

Here we take T →∞,
Sx(f) = |H(i 2πf)|2 Sy(f). (4)

When we handle linear response, it is more convenient to use angular frequency ω = 2πf
than ordinary frequency f . Here, we introduce following notation for single sided noise
spectral density, so that we can easily go back and forth between those two kind of
frequency. 〈

y2
〉
f
df = 2Sy(f) df,

〈
y2
〉
ω
dω = 2Sy(ω/2π)

dω

2π
.

With this notation, Eq. (4) become〈
x2
〉
ω

= |H(iω)|2
〈
y2
〉
ω
.

Similarly, if we have two noise sources y and z, Fourier coefficient of x is written
with corresponding transfer function F (s) and G(s) and Fourier coefficient YT (f) and
ZT (f) as

XT (f) = F (i 2πf)YT (f) +G(i 2πf)ZT (f).

Assuming that there is no correlation between two noise sources i.e., they are indepen-
dent each other:

〈Y ∗T (f)ZT (f)〉 = 0,

spectral density at output can be calculated as follows:〈
x2
〉
ω

= |F (iω)|2
〈
y2
〉
ω

+ |G(iω)|2
〈
z2
〉
ω
.
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Example: RC low-pass filter The only noise source is resistor R which is mod-
eled as current source iN in parallel. Noise spectral density is given by〈

i2N
〉
ω
dω =

4kΘ

R
· dω

2π
.

Equation for node vo:

vo − vi
R

+ sC vo − iN = 0.

vi

R

iN

vo

C

Therefore,

vo =
vi

1 + sRC
+

R iN
1 + sRC

= F (s) vi +G(s) iN .

Spectral density on output due to resistor noise:〈
v2o
〉
ω
dω = |G(iω)|2

〈
i2N
〉
ω
dω =

4kΘR

1 + (ωRC)2
· dω

2π
,

or 〈
v2o
〉
f
df =

4kΘR

1 + (2πfRC)2
df.

Example: Thermal noise of operational amplifier Opamp’s noise is usually

modeled as voltage sources on each terminal as
shown vNp , vNn and vNo in the right. Opamp’s
transfer function:

A(s) =
A0

1 + s τAA0
∼ 1

s τA
.

Gain G is set by ratio of two resistors:

G =
R1 +R2

R2
= 1 +

R1

R2
.

vi

vNp

A(s)vNn

vNo

vx

R2

iN2

R1

iN1

vo

Opamp’s equation and equation for node vx is respectively,

vo = vNo +A(s)
(
(vi + vNp)− (vx + vNn)

)
,

vx
R2
− iN2 +

vx − vo
R1

+ iN1 = 0.

Therefore,

vo =
G
(
vi + vNp − vNn

)
+R1 (iN1 − iN2) + s τAGvNo
1 + s τAG

,

or
vo = E(s) vi + E(s) vNp − E(s) vNn + F (s) iN1 − F (s) iN2 +H(s) vNo ,

where

E(s) =
G

1 + s τAG
, F (s) =

R1

1 + s τAG
, H(s) =

s τAG

1 + s τAG
.
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Recalling that noise current spectral density of a resistor
〈
i2N
〉
f

is 4kΘ/R, contribution
of feedback resistors:〈

v2R
〉
ω

= |F (iω)|2
(〈
i2N1

〉
ω

+
〈
i2N2

〉
ω

)
=

4kΘR1G

1 + (ω τAG)2
· 1

2π
.

Integrated noise: ∫ ∞
0

〈
v2R
〉
ω
dω =

kΘ

τA/R1
. (5)

Input terminal’s contribution:

〈
v2A
〉
ω

= |E(iω)|2
(
〈v2Np〉ω + 〈v2Nn〉ω

)
=
G2(〈v2Np〉ω + 〈v2Nn〉ω)

1 + (ω τAG)2
.

Integrated noise: ∫ ∞
0

〈
v2A
〉
ω
dω =

G

4 τA

(
〈v2Np〉ω + 〈v2Nn〉ω

)
. (6)

H(s) is high-pass filter, low frequency component of vNo is cut off. Contribution from
vNo is usually very small.

In many cases, opamp A consists of transconductance amplifier followed by buffer
amplifier. In such case, unity gain specific time and input terminal noise is given by

τA ∼ Cc/gm, 〈v2Np〉ω = 〈v2Nn〉ω ∼
4kΘ

gm
·Kth ·

1

2π
,

where Cc, gm and Kth is, respectively, compensation capacitor, transconductance and
noise coefficient of the amplifier. As we will see later sections, Kth for bipolar opamp is
roughly 1/2 and Kth for CMOS opamp will be somewhere around 2/3 ∼ 2 depending
on noise coefficient of the input pair and the topology of the amplifier. Inserting these
into Eq. (5) and (6) yields∫ ∞

0

〈
v2R
〉
ω
dω =

kΘ

Cc
· gmR1,

∫ ∞
0

〈
v2A
〉
ω
dω =

2kΘKth

Cc
·G.

Total input refereed integrated noise (excluding buffer noise) is sum of above divided
by G2:

1

G2

∫ ∞
0

〈
v2o
〉
ω
dω =

1

G2

∫ ∞
0

(〈
v2R
〉
ω

+
〈
v2A
〉
ω

)
dω =

kΘ

GCc

(
2Kth +

gmR1

G

)
.

As for inverting amplifier (set opamp’s positive input to the ground and put signal at
R2), signal gain Gi is R1/R2. Therefore input referred integrated noise will be,

1

G2
i

∫ ∞
0

〈
v2o
〉
ω
dω =

kΘ

GiCc

(
2Kth +

1

Gi
+ gmR2

)
.

14



Noise floor from resistor, 4kΘR1G, can be written with Gi as 4kΘGi(R1 +R2).
In reality, we have excessive noise component such as flicker noise (MOSFET) or

base resistance noise (BJT). Reference [3] and [2] treat such excessive noise component
in detail.

Example: Full-differential switched capacitor circuit Let’s find noise of
full-differential version of switched capacitor amplifier as shown in below.

Cs
vx

Cf
vo

A(s)CiCk

ii = L{−CsVi0 δ(t)}

For vx;
sCs vx + sCf (vx − vo) + s(Ck + Ci) vx = 0.

Therefore
vo = Gτ vx, Gτ = (Cf + Cs + Ck + Ci) /Cf .

Amplifier’s output vo is

vo = A (−vx − vNi) + vNo , A = 1/s τA,

where vNi and vNo is input noise and output noise, respectively. Note that since we
are dealing with the single-end half of full-differential circuit, the positive input con-
nected to the grand is virtual, we only need to include noise for the negative terminal.
Combining two equations yields,

vo = − Gτ
1 + s τAGτ

· vNi +
s τAGτ

1 + s τAGτ
· vNo ,〈

v2o
〉
ω

=
G2
τ

1 + (ωτAGτ )2
·
〈
v2Ni
〉
ω

+
(ωτAGτ )2

1 + (ωτAGτ )2
·
〈
v2No
〉
ω〈

v2No
〉

is suppressed at lower frequencies and it is usually small and cut off by the next
stage’s input switch and the sampling capacitor. Suppose that

〈
v2Ni
〉
ω

is dominated by
the input pair’s thermal noise and that τA = CL/gmi :〈

v2Ni
〉
ω
dω =

4kΘ

gmi
·Kth ·

dω

2π
+

kΘ

Cg
·Kf ·

dω

ω
,

15



where Kth and Kf is the thermal noise coefficient and the flicker noise coefficient of
the input pair transistor, respectively. Thermal part of total noise:∫ ∞

0

〈
v2o
〉
ω
dω =

kΘGτ
CL

·Kth.

Input referred (G = Cs/Cf ) in the unit of kΘ/Cs:

1

G2

∫ ∞
0

〈
v2o
〉
ω
dω =

kΘ

Cs
·
Cf
CL
· Gτ
G
·Kth,

By inserting typical numbers into
Cf
CL
· GτG for various gain setting, you will find higher

gain gives input referred lower noise.
We will discuss flicker noise in Section 1.7.4.
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1.5 Equivalent noise resistance and noise factor

In the last section, we have learnt that noise spectral density of RC low-pass filter is〈
v2o
〉
f

=
4kΘR

1 + (2πfRC)2
.

At low frequency it is 4kΘR.
〈
v2o
〉
f

can be obtained by simulation and
〈
v2o
〉
f

at low

frequencies (where it is flat) divided by 4kΘ gives resistance R. Similarly, opamp’s
output noise spectral density is calculated using last section’s example,

〈
v2o
〉
f

=
〈
v2R
〉
f

+
〈
v2A
〉
f

= 4kΘR1G+ 4kΘ · G
2

gm
= 4kΘ

(
R1G+

G2

gm

)
.

Here we dropped frequency factor to focus on noise at low frequency. Again,
〈
v2o
〉
f
/4kΘ

gives a quantity in resistance which can easily be calculated from design parameters
(R1, R2, gm). We call

〈
v2o
〉
f
/4kΘ as equivalent noise resistance. In this way, we can

compare noise spectral densities obtained by simulation with the one calculated from
design parameters. It will be more convenient to measure equivalent noise resistance
in the unit of gm because bandwidth of the amplifier is closely related with gm:〈

v2o
〉
f

4kΘ
=

(
R1G+

G2

gm

)
=

G2

gm

(
1 +

gmR1

G

)
.

Note that gmR1 stays constant if we scale everything wider, e.g., if we make everything
twice as wide, gm gets twice, R1 become half. We call such quantity a scale invariant.

And input referred integrated noise is roughly baseline spectral density times 1/4 of
its bandwidth. Recalling that bandwidth in this case is 1/τAG and that τA = Cc/gm,
input referred integrated noise will be

1

G2

∫ ∞
0

〈
v2o
〉
f
df =

4kΘ

gm

(
1 +

gmR1

G

)
· 1

4 τAG
=

kΘ

GCc

(
1 +

gmR1

G

)
.

Integrated noise divided by kΘ gives a quantity in (inverse of) capacitance which can
easily be calculated from design parameters and we call it equivalent noise capacitance.

Noise factor It is more convenient measure equivalent noise capacitance in the unit
of a capacitance specific to the system in question. In this case, it is GCc. We call
equivalent noise capacitance measured in the unit of such unit capacitance as noise
factor. In this case, it is (1 + gmR1/G). Note that noise factor is scale invariant, i.e.,
circuit it stays constant, if we scale everything wider or narrower while keeping current
density the same.

17



1.6 Origin of white noise

Let us take a look at a series of impulse events which occurs randomly at fixed rate of
P events per unit time. Let xT (t) be an observation of a such series of impulses for a
time period T . xT (t) can be written as

xT (t) =
N∑
j=1

δ(t− tj),

where N is number of events for a time period of T . If we observe this event long
enough so that PT � 1, we can approximate N by PT . Fourier transform of xT (t):

XT (f) =

∫ T/2

−T/2
xT (t)e−i 2πft dt =

PT∑
j=1

∫ T/2

−T/2
δ(t− tj) e−i 2πft dt =

PT∑
j=1

e−i 2πftj .

Spectral density:

S(f) = lim
T→∞

〈
X∗T (f)XT (f)

T

〉
,

= lim
T→∞

∑
j,k

〈
ei 2πf(tk−tj)

〉
· 1

T
.

Here time series t1, t2, t3, ... is randomly distributed for each observation, average of
ei 2πf(tk−tj) vanishes except for j = k and the number of such term in the summation
is PT . Therefore

S(f) = lim
T→∞

P T · 1

T
= P,

P events per unit time means that event interval is τ = 1/P in average. In single sided
notation: 〈

x2
〉
f

= 2S(f) = 2P = 2/τ.

White noise source is mathematically modeled as a collection of consequences of these
elementary impulses. If we know response of current, for example, against such ele-
mentary impulse, we can calculate noise spectral density from τ of that impulse. One
example is current by itself. If x is the number of carrier passage at a given surface
per unit time, current I will be q/τ and q2

〈
x2
〉
f

will be noise current spectral density.
Therefore, 〈

i2N
〉

= 2qI.

This is called shot noise.

We will study white noise in physical point of view later in Section 2.
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1.7 Transient behavior

In discrete time systems such as data converters, we often find some of noise sources
appear only one phase of the clock. For example MOS switch contributes noise only
when it is closed. In this section we will study noise contribution of such noise sources
as a function of time after it is turned on.

1.7.1 Frequency factor and effective bandwidth

We want to find mean square noise at output as a function of time t, in case noise
source y is turned on at t = 0. We assume that y is white noise source. Suppose that
y(t) is noise voltage, its response x(t) is written as follows:

x(t) =

∫ t

0
h(t− τ) y(τ) dτ, (7)

where h(t) is impulse response of x to y. Ensemble average
〈
x2(t)

〉
is the one we want.

The procedure to obtain
〈
x2(t)

〉
is just as what we have done before. We first write

y(t) in Fourier series rather than integral, because y(t) is not square integrable.

y(t) =
1

T

∑
ω

Yω e
iωt, (8)

where sum is taken for all ω = 2πn, n = [−∞ ...∞]. Then calculate x2(t) in terms of
Yω and take ensemble average. Since y is white noise source, we expect that there is
no correlation between different frequency components, i.e.,〈

Y ∗ω Yω′

T

〉
= 0.

(
ω′ 6= ω

)
. (9)

Finally bring T →∞, so that we can use

lim
T→∞

2

〈
Y ∗ω Yω
T

〉
= lim

T→∞
2

〈
|Yω|2

T

〉
=
〈
y2
〉
ω
. (10)

Now we execute the procedure. Inserting Eq. (8) into Eq. (7) yields

x(t) =
∑
ω

Yω
T

∫ t

0
h(t− τ) eiωτ dτ.

Therefore

x2(t) =
1

T

∑
ω

∑
ω′

Yω′ Yω
T

∫ t

0
h(t− τ)eiωτ dτ

∫ t

0
h(t− τ ′) eiω′τ ′ dτ ′.
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Taking ensemble average and making substitution ω′ → −ω′ yields〈
x2(t)

〉
=

1

T

∑
ω

∑
ω′

〈
Y ∗ω′ Yω
T

〉∫ t

0
h(t− τ) eiωτdτ

∫ t

0
h(t− τ ′)e−iω′τ ′ dτ ′.

Using Eq. (9) and noting that two integrals are complex conjugate each other if ω = ω′,〈
x2(t)

〉
=

1

T

∑
ω

〈
Y ∗ω Yω
T

〉 ∣∣∣∣∫ t

0
h(t− τ) eiωτ dτ

∣∣∣∣2 .
Taking limit T →∞, summation becomes integral:〈

x2(t)
〉

=

∫ ∞
−∞

〈
y2
〉
ω

2

∣∣∣∣∫ t

0
h(t− τ) eiωτ dτ

∣∣∣∣2 dω.
Since y is white

〈
y2
〉
ω

can be brought out from the integral. Since integrand of the
outer integral is even function of ω, we take positive frequency only:〈

x2(t)
〉

=
〈
y2
〉
ω

∫ ∞
0

∣∣∣∣∫ t

0
h(t− τ) eiωτ dτ

∣∣∣∣2 dω,
=
〈
y2
〉
ω

∫ ∞
0

ft(ω) dω =
〈
y2
〉
ω
F (t).

where we have defined frequency factor ft(ω) and effective bandwidth F (t):

ft(ω) =

∣∣∣∣∫ t

0
h(t− τ) eiωτ dτ

∣∣∣∣2 , F (t) =

∫ ∞
0

ft(ω) dω =
1

2

∫ ∞
−∞

ft(ω) dω.

Frequency component of mean square noise at t can be defined as〈
x2(t)

〉
ω

=
〈
y2
〉
ω
ft(ω),

so that mean square noise can be written in integrated noise.〈
x2(t)

〉
=

∫ ∞
0

〈
x2(t)

〉
ω
dω.

Multiple source In case we have another independent (not correlated) white noise
source z, its response is sum of these two,

x(t) =

∫ t

0
h(t− τ) y(τ)dτ +

∫ t

0
g(t− τ) z(τ)dτ.

We can repeat the same procedure. Using the fact y and z are not correlated, we get〈
x2(t)

〉
ω

=
〈
y2
〉
ω

∣∣∣∣∫ t

0
h(t− τ) eiωτ dτ

∣∣∣∣2 +
〈
z2
〉
ω

∣∣∣∣∫ t

0
g(t− τ) eiωτ dτ

∣∣∣∣2 .
Therefore we can calculate contribution from each noise source separately and then
sum them up to obtain total amount.
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Steady state limit Let us write transfer function in partial fraction expansion:

H(s) =
∑
k

τk
1 + s τk

ak.

From the causality requirement, real part of τk is positive. In case H(s) only has simple
pole, impulse response function is

h(t) =
∑
k

ak e
−t/τk .

Frequency factor ft(x):

ft(ω) =

∣∣∣∣∫ t

0
h(t− τ)eiωτ dτ

∣∣∣∣2 =

∣∣∣∣∣∑
k

akτk
1 + iω τk

(
eiωt − e−t/τk

)∣∣∣∣∣
2

.

For sufficiently large t, all e−t/τk vanishes and we get steady state formula:

ft(ω) =

∣∣∣∣∣∑
k

akτk
1 + iω τk

eiωt

∣∣∣∣∣
2

=
∣∣H(iω) eiωt

∣∣2 = |H(iω)|2 , (t→∞)

therefore 〈
x2(∞)

〉
ω

= |H(iω)|2
〈
y2
〉
ω
.

The same thing can be said for cases in which H(s) has non-simple poles.

1.7.2 First order transfer function

H(s) =
a1τ1

1 + s τ1
, ft(ω) =

∣∣∣∣ a1τ1
1 + iω τ1

(
eiωt − e−t/τ1

)∣∣∣∣2 .
Effective bandwidth:4

F (t) =
1

2

∫ ∞
−∞

ft(ω) dω =
π

2

(a1τ1)
2

τ1

(
1− e−2t/τ1

)
. (11)

For RC low-pass filter, a1τ1 = 1, τ1 = RC and
〈
y2
〉
ω

= 4kΘR/2π:〈
x2(t)

〉
=
〈
y2
〉
ω
F (t),

=
4kΘR

2π
· π

2RC

(
1− e−2t/RC

)
=
kΘ

C

(
1− e−2t/RC

)
.

4Appendix D shows how to calculate this integral.

21



Example: ON resistance of MOS switch in track and hold Basic struc-
ture of track and hold circuit is RC low-pass filter in which R is replaced by MOS
transistor. In hold mode, R is extremely high and iN is extremely small. At transition
to track mode (t = 0), iN turns on. We sample output at Ts when the circuit goes
back to hold mode. In usual operating conditions, however, Ts is at least a few times
larger than its specific time τ = RC, we do not get much noise reduction.

Example: Random walk Let us think about classic random walk problem5.
When a particle is moving randomly, how far in average would it move in a time
period of t?

The position x of the particle at t is simply integral of velocity over time:

x =

∫ t

0
vN (t) dt.

Taking Laplace transform yields

X(s) = H(s)VN (s), H(s) =
1

s
.

We take VN (s) as white noise source of which spectral density
〈
V 2
N

〉
ω
. Note that

dimension of
〈
V 2
N

〉
ω

is velocity squared per frequency, i.e., [L2T−2(1/T)−1] = [L2T−1].
Using,

1

s
= lim

τ→∞

τ

1 + s τ
,

“effective bandwidth” is calculated from Eq. (11),

F (t) = lim
τ→∞

π

2
τ
(

1− e−2t/τ
)
,

= lim
τ→∞

π

2
τ (1− 1 + 2t/τ) = π t.

Here we have used eδ ∼ 1 + δ for small δ. Therefore square average distance of a
random walk particle would make in a time period of t is〈

x2
〉

= F (t)
〈
V 2
N

〉
ω

= π
〈
V 2
N

〉
ω
t.

A particle moving at random velocity does not stay in a definite region, even though
its average velocity is zero (〈vN (t)〉T = 0). If we think of an ensemble of particles
concentrated at x = 0 at t = 0, square average of positions of particles would increase
over time, which we observe as diffusion. We will come back this topic later in Section 2.

5Connection with random walk is pointed out by Manar El-Chammas.
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1.7.3 Second order transfer function

H(s) =
a1τ1

1 + s τ1
+

a2τ2
1 + s τ2

.

Frequency factor is calculated as follows:

ft(ω) =

∣∣∣∣∣a1τ1
(
eiω t − e−t/τ1

)
1 + iω τ1

+
a2τ2

(
eiω t − e−t/τ2

)
1 + iω τ2

∣∣∣∣∣
2

,

=
(a1τ1)

2
(
eiω t − e−t/τ1

) (
e−iω t − e−t/τ1

)
(1 + iω τ1) (1− iω τ1)

+
(a2τ2)

2
(
eiω t − e−t/τ2

) (
e−iω t − e−t/τ2

)
(1 + iω τ2) (1− iω τ2)

+
a1τ1 a2τ2

(
eiω t − e−t/τ1

) (
e−iω t − e−t/τ2

)
(1 + iω τ1) (1− iω τ2)

+ c.c. ,

where c.c. is complex conjugate of the third term. Effective bandwidth:

F (t) =
1

2

∫ ∞
−∞

ft(ω) dω =
π

2

[
(a1τ1)

2

τ1

(
1− e−2t/τ1

)
+

(a2τ2)
2

τ2

(
1− e−2t/τ2

)
+

4a1a2
1/τ1 + 1/τ2

(
1− e−(1/τ1+1/τ2)t

)]
. (12)

Example: Base current noise of track and hold buffer In case track and
hold circuit is followed by a bipolar transistor, its base current noise is integrated at the
sampling capacitor and its spectral density diverges at low frequency.[2] Here output
x is amount of charge at the next stage’s sampling capacitor. Noise transfer function
H(s) is given by

H(s) = −ω0

s
+

a1τ1
1 + s τ1

,

where 1/τ1 is overall bandwidth at the output. We can calculate effective bandwidth
directly from this, however we can rewrite H(s) as second order partial fraction with
taking limit of τ0 →∞ as follows:

H(s) = −ω0

s
+

a1τ1
1 + s τ1

= lim
τ0→∞

(
− ω0τ0

1 + s τ0
+

a1τ1
1 + s τ1

)
.

Therefore effective bandwidth is obtained by substituting symbols and taking limit on
Eq. (12). The result is

F (t) = π ω2
0 t+

π(a1τ1)
2

2 τ1

(
1− e−2t/τ1

)
− 2π ω0 a1τ1

(
1− e−t/τ1

)
.
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What we want is F (Ts) where Ts is holding period. In usual operating conditions, Ts
is at least a few times larger than τ1, exponential terms vanish.

F (Ts) ∼ π ω2
0 Ts +

π(a1τ1)
2

2 τ1
− 2π ω0 a1τ1.

We see more noise at lower conversion rate. For given Ts, there may be an optimum ω0

to minimize noise. The first and the second term came from the first and the second
term of H(s), respectively. The third is cross product term. In case the first term is
dominating F (Ts), it happens to be expressed as frequency domain integrated noise:

F (Ts) ∼ π ω2
0 Ts ∼

∫ ∞
ωs

|H(iω)|2 dω, ωs =
1

π Ts
=

Fs
π/2

,

where Fs is sampling frequency (2Ts = 1/Fs).
Figure 2 compares AC noise simulation and measurement data of a bipolar pipeline

ADC. Please do not confuse this noise with the error caused by base current itself.
Base current error is mainly common-mode and error voltage is proportional to time.
Even if it shows up in differential mode causing gain error, noise power due to such
error should be proportional to square of time.
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Figure 2: (a) Noise spectral density of a bipolar track and hold circuit. In track phase it
behaves like an RC low-pass filter. However in hold phase, it diverges as frequency goes low.
This is because base current noise is integrated at the undriven capacitor. (b) Integrated
noise

∫∞
f
〈v2N〉f df . We can take value at f = Fs/π

2 as expected noise contribution of this

block at sampling frequency Fs. (c) Measured SNR of pipeline ADC for a few device.
Room Temp. Ain=–1dBFS. (d) Blue lines are SNR converted to mean square codes, using

NL
2

= (2N/2
√

2)2/SNR. Red line is simulated noise of this ADC converter, calculated
from AC noise spectral density by

∫∞
Fs/π2 〈v2N〉f df . The slope is originated low frequency

divergence of base current noise. Distortion due to inter-stage gain error separates simulation
and measurement.
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1.7.4 Flicker noise

Let us consider following identity.

K

ω
=

2K

π

∫ ∞
0

1

1 + τ2ω2
dτ

The right hand side can be interpreted as infinite sum of low-pass filtered white noise
source of which spectral density is 2K/π, and the left hand side is spectral density of
flicker noise. This is one of ways to model flicker noise. However, it is unlikely for a
system to have infinite bandwidth (τ = 0), there has to be lower limit for τ . Let’s say
this limit is τT . Spectral density of flicker noise

〈
x2
〉
ω

can be written as follows:

〈
x2
〉
ω

=
〈
y2τ
〉
ω

∫ ∞
τT

1

1 + τ2ω2
dτ,

〈
y2τ
〉
ω

=
2K

π
,

where yτ is white noise source of which spectral density does not depend on τ . At low
frequencies

〈
x2
〉
ω

is proportional to 1/ω and at high frequencies it is proportional to
1/ω2, transition occurs around ω ∼ 1/τT .

Effective bandwidth for flicker noise is the last expression of Eq. (11) with a1τ1 = 1
integrated from τT to infinity,

F (t) =
π

2

∫ ∞
τT

1− e−2t/τ

τ
dτ.

Thanks to finite τT , this integral converges.
However, unfortunately, I do not know how to proceed. But for now, let’s just try

to get some idea from AC simulation.
For a given t, there is a ξ which satisfies∫ 2t ξ

τT

1

τ
dτ =

∫ ∞
τT

1− e−2t/τ

τ
dτ,

because both integrand is positive and integrand of the right side is always smaller
than that of the left. With such ξ, effective bandwidth is written as follows:

F (Ts) =
π

2

∫ 2Ts ξ

τT

1

τ
dτ =

π

2
ln

2Ts ξ

τT
= π2

∫ fT

Fs/ξ

1

f
df.

where 2Ts = 1/Fs, 2πfT = 1/τT . Although it is somewhat artificial, F (Ts) is expressed
as frequency domain integrated noise. ξ is a function of τT and we just hope ξ ∼ 1 for
2Ts � τT . Experience suggests ξ ∼ 10.
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Example: Full-differential switched capacitor circuit Let’s go back to the
example in Section 1.4 where we left flicker noise term unfinished. The flicker noise
term was 〈

v2Ni
〉
ω
dω =

kΘ

Cg
·Kf ·

dω

ω
, (flicker term only)

where Cg is a quantity in capacitance used to extract Kf from measurement, and is
proportional to device area but not necessarily be the gate capacitance of the device.
On the output, this flicker noise is band limited by the amplifier

〈
v2o
〉
ω

=
G2
τ

1 + (ω τAGτ )2
·
〈
v2Ni
〉
ω

Therefore flicker noise’s contribution to the total noise at the output will be,

〈
v2o
〉

=
kΘKfG

2
τ

Cg
· π

2
ln

2Tsξ

τAGτ
.

Input referred:
1

G2

〈
v2o
〉

=
kΘ

Cs
·
Cf
Cg
· G

2
τ

G
·Kf ·

π

2
ln

2Tsξ

τAGτ
.
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2 A Few Topics on Thermal Noise

This section gives some physical basis on thermal noise formulae used in the previous
sections. This section is not particularly useful in circuit design.

2.1 Macroscopic derivation of Nyquist formula

2.1.1 Statistical mechanics of tank circuit

Suppose that an LC tank is placed in the middle of empty space. The total energy of
this system is the sum of energy stored in the inductor L and the capacitor C:

E =
1

2
LI2 +

1

2
CV 2,

where I and V is current of the circuit and voltage across C, respectively. Recalling
that I = CV̇ , this can be written as

E =
1

2
LC2V̇ 2 +

1

2
CV 2.

This is identical to a harmonic oscillator

E =
1

2
mẋ2 +

1

2
mω2

0 x
2

with
m = LC2, ω2

0 = 1/LC.

According to statistical mechanics, each harmonic oscillator has kT of energy in average
at equilibrium.

Ē = kT.

How can an isolated tank circuit acquire energy? In statistical mechanics, it is implicitly
assumed that the system in question exchanges energy with the environment (or heat
bath). The energy flow from the system to the environment is considered dissipation
and the inverse can be considered thermal agitation. When net energy flow between the
system and the environment is zero, the system is at equilibrium. In electric circuits,
dissipation can be modeled as a resistor, and thermal agitation can be modeled as a
voltage source. Therefore an LC tank circuit at equilibrium can be modeled as damped
resonator. Circuit equation for such damped resonator is

L İ +RI +
q

C
= V, I = q̇.

where q and V is charge stored in C, and electromotive force due to thermal agitation,
respectively.
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2.1.2 Damped oscillator

We first consider in case agitation force is absent to find rate of dissipation. Equation
for q becomes

q̈ + 2λq̇ + ω2
0q = 0,

with
λ = R/2L, ω2

0 = 1/LC.

Let’s say q = ert. Inserting this to the equation yields

r2 + 2λr + ω2
0 = 0.

Therefore

r = −λ±
√
λ2 − ω2

0.

In case λ < ω0 we get oscillating solution:

q = a e−λ cos(ωt+ δ), ω = ω0

√
1− (λ/ω0)2,

where a and δ is constant coming from initial condition. Furthermore, if we assume
λ� ω0, shift of oscillation frequency from ω0 become second order small quantity and
we can neglect it.

ω = ω0

√
1− (λ/ω0)2 ∼ ω0

(
1− 1

2
(λ/ω0)

2

)
∼ ω0.

Since λ � ω0, amplitude decays much slower than oscillation frequency, it can be
treated as a constant for a cycle. Therefore average energy stored in L and C over
a cycle is proportional to square of amplitude. Since amplitude decays at rate of λ,
average energy decays at rate of 2λ:

dĒ

dt
= −2λĒ.

Agitation force V provides power to keep the system at equilibrium.

2.1.3 Damped resonator

Now we would like to turn back to damped resonator. Equation in s space:(
sL+R+

1

sC

)
I = V.

Therefore frequency response:

I(ω)

V (ω)
=

iω C

1 + iω RC + (iω)2LC
.
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Note that here V (ω) is a quantity such that |V (ω)|2 becomes a power spectral density
([V2/rad/s]). Similarly I(ω) is a quantity such that |I(ω)|2 becomes a power spectral
density ([A2/rad/s]). Using ω2

0 = 1/LC and λ = R/2L,

I/V =
1

R
·

i
ω

ω0
· 2λ

ω0

1−
(
ω

ω0

)2

+ i
ω

ω0
· 2λ

ω0

.

Our focus is frequency near ω0. Substituting ω with ω0 + ε and dropping second order
small quantity yields

I/V = − 1

R
· iλ

ε− iλ
.

Therefore power spectral density p(ε) and total power P is respectively

p(ε) = Re (V ∗I) =
λ2

ε2 + λ2
· |V (ω)|2

R
, P =

∫ ∞
−ω0

p(ε) dε.

Since λ2/(ε2 + λ2) has sharp peak at ω0, we can bring |V |2/R out from the integral
using the value at ω0. Also the integrand at ε� −λ does not contribute much to the
integral, we can extend the integral from −∞:

P ∼ |V (ω0)|2

R

∫ ∞
−∞

λ2

ε2 + λ2
dε =

|V (ω0)|2

R
· πλ.

To maintain equilibrium this has to be equal to the rate of dissipation −dĒ/dt, i.e.,

−dĒ
dt

= 2λĒ = P ∼ πλ |V (ω0)|2

R
.

Recalling that Ē = kT , we find

|V (ω0)|2/R ∼ 4kT/2π.

This is in fact exact, see Appendix E for details. Since the right hand side does not
depend on ω0, we can think of the environment as if it has voltage source with flat
spectral density of 4kTR per Hz. Here R was barely a model for the environment. Can
this be a real resistor? The answer is yes. In a real resistor, dissipation happens as a
result of interaction between the carrier and everything else of the resistor, resulting
resistance. “Everything else” is indeed a part of the environment. In usual circuit
setups, dissipation due to resistance is much greater than dissipation due to other
means such as radiation. We can regard resistor body by itself as the environment.
Ideal L and C are used as a tool to show spectral density of agitation force is white.
In fact, they are not essential to thermal agitation force. It is rate of dissipation
(resistance) which balances with power of agitation force.
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2.1.4 Equivalent circuit for impedance

Let us think about equilibrium of a resistor R1 and an impedance
Z connected through resonator like shown in the right. Here
we suppose that two component are exchanging energy solely
through the noise current. Because of resonator, energy is ex-
changed by frequency component of ω = 1/

√
LC of the current.

At equilibrium energy transfer from R to Z and Z to R should
be equal.

R1

L C

Z(iω)

Suppose that v1 and v2 is noise electromotive force of R1 and Z, respectively and
that v1(ω) and v2(ω) is its frequency component, some quantity of which square mag-
nitude |v1(ω)|2 and |v2(ω)|2 become spectral density. We know |v1(ω)|2 is 4kTR1/2π

for any ω and we like to find formula for |v2(ω)|2 from the condition that R1 and Z
are at thermal equilibrium, i.e., power transfer is balanced. Power transferred from R1

to Z through frequency between ω and ω + dω is

Re(i1(ω) · v∗Z(ω)) dω = Re

(
v1(ω)

R1 + Z(iω)
· Z
∗(iω) v∗1(ω)

R∗1 + Z∗(iω)

)
dω,

= Re(Z∗(iω)) · |v1(ω)|2

|R1 + Z(iω)|2
dω,

= Re(Z∗(iω)) · 4kTR1/2π

|R1 + Z(iω)|2
dω,

where i1, vZ is the circuit current due to v1 and the voltage drop across Z, respectively.
Power transferred from Z to R1 through frequency between ω and ω + dω is

Re(i2(ω) · v∗R(ω)) dω = Re

(
v2(ω)

R1 + Z(iω)
· R1 v

∗
2(ω)

R1 + Z∗(iω)

)
dω,

=
R1

|R1 + Z(iω)|2
· |v2(ω)|2 dω,

where i2 and vR is the circuit current due to v2 and the voltage drop across R1,
respectively. At equilibrium power transfer between R1 and Z is balanced. Therefore

|v2(ω)|2 =
4kT

2π
Re(Z(iω)) . (13)

We can use current source iZ instead of electromotive force (voltage source). Power
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Z

vN

〈
v2N
〉
ω

=
4kT

2π
Re(Z(iω))

=
4kT

2π
R(ω)

Z(iω) = R(ω) + iX(ω)

Z iN

〈
i2N
〉
ω

=
4kT

2π
Re

(
1

Z(iω)

)
=

4kT

2π
G(ω)

1/Z(iω) = G(ω) + i B(ω)

Figure 3: Equivalent circuit for (passive) impedance Z with noise source. (Left) With noise
voltage source. (Right) With noise current source.

transferred from Z to R1 through frequency between ω and ω + dω is

Re(iR(ω) · vR(ω)∗) dω =
|vR(ω)|2

R1
dω,

=
1

R1

∣∣∣∣ iZ
1/R1 + 1/Z(iω)

∣∣∣∣2 dω,
=

R1 |Z(iω)|2

|R1 + Z(iω)|2
· |iZ(ω)|2 dω,

where iR and vR is current and voltage at R1 due to iZ . This should be equal to power
transfer from R to Z. Therefore

|iZ(ω)|2 =
4kT

2π
· Re(Z(iω))

|Z(iω)|2
=

4kT

2π
Re

(
1

Z(iω)

)
. (14)

If Z can be decomposed into real part and imaginary part like

Z(iω) = R(ω) + iX(ω),

noise can be modeled as a voltage source vN in series with Z, of which power spectral
density

〈
v2N
〉
f

is equal to 4kTR(2πf).

If 1/Z can be decomposed into real part and imaginary part like

1/Z(iω) = G(ω) + i B(ω),

noise can be modeled as a current source iN in parallel with Z, of which power spectral
density

〈
i2N
〉
f

is equal to 4kTG.

Figure 3 summarizes these results.
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2.2 Microscopic derivation of Nyquist formula

2.2.1 Macroscopic quantities in terms of microscopic quantities

Consider a conductor of length L, cross sectional area of A, resistance of R. When we
apply voltage V across each end, current runs through this conductor will be

I = V/R.

Whereas relation between current density j = I/A and electric filed E = V/L is

j = σE, or I/A = σV/L,

where σ is called conductivity. Therefore relation between σ and R is,

R =
L

σA
.

Suppose that current is running uniformly inside the conductor, i.e., carrier density
(n) and average (drift) carrier velocity (v̄) is also uniform:

j = n q v̄, n = N/AL,

where q and N is charge of a carrier and total number of carriers, respectively. In this
and following sections we use bar for average over carriers in a system and bracket for
ensemble average. For example, v̄ is average velocity of carries in a system and 〈vi〉 is
ensemble average of i-th carrier’s velocity.

Now equation of motion for each carrier:

mv̇i = −m
τc
vi + qĒ,

where m is mass of carrier, τc represents average “drag force” from all sorts of inter-
action between carrier and lattice vibration, impurity etc., and Ē is V/L. The reason
why we have a bar on top of E is that, in microscopic point of view, each carrier should
see local electric field from surrounding atoms. However, since conductor as a whole
is electrically neutral those local modulation vanishes in average. After sufficient time
carrier particles catch up steady speed where filed force and drag force are balanced:

m

τc
v̄ = qĒ → v̄ =

q τc
m

Ē = µĒ,

where µ = q τc/m is called carrier mobility. Therefore conductivity is written with q,
m and τc as follows:

j = n q v̄ = nqµĒ =
n q2v̄

m
Ē → σ = nqµ =

n q2τc
m

.
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2.2.2 Random agitation force

Now let us take a close look at each carrier when V = 0. Average field Ē is of course
zero, however carrier receives force from surroundings as a result of thermal agitation.
Let Ei represent such thermal agitation force and we assume it is white noise. In such
case equation of motion for each carrier is

mv̇i = −m
τc
vi + q Ei,

From Laplace transform of the equation

smvi(s) = −m
τc
vi(s) + qEi → vi(s)/Ei =

q τc
m
· 1

1 + s τc
,

we get relation between spectral densities〈
v2i
〉
ω

=
(q τc)

2

m2
· 1

1 + ω2τ2c

〈
E2i
〉
ω
, (15)

and mean square velocity〈
v2i
〉

=

∫ ∞
0

〈
v2i
〉
ω
dω =

π

2
· q

2τc
m2

〈
E2i
〉
ω
.

At equilibrium this should be equal to the thermal velocity kT/m, therefore spectral
density of agitation force is found to be〈

v2i
〉

=
π

2
· q

2τc
m2

〈
E2i
〉
ω

=
kT

m
→

〈
E2i
〉
ω

=
4kT

2π
· 1

qµ
. (16)

2.2.3 Electromotive force

For arbitrary cross section, there is nA carriers per unit length and average agitation
force per unit length over a cross section Ē is

∑
Ei/nA where sum is taken over nA

carriers. Therefore ensemble mean square〈
Ē2
〉

=
1

(nA)2
· nA

〈
E2i
〉

=
1

nA

〈
E2i
〉
.

Mean square electromotive force across the conductor can be summed up for its length:〈
V 2
〉

= L
〈
Ē2
〉

=
L

nA

〈
E2i
〉
.

Same thing can be said for each frequency component:〈
V 2
〉
ω

=
L

nA

〈
E2i
〉
ω
.

Therefore, using σ = nqµ, R = L/Aσ,〈
V 2
〉
ω

=
L

nA

〈
E2i
〉
ω

= 4kTR / 2π.
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2.2.4 Noise current

Recalling that current is expressed by number of carriers inside the conductor N as

I = Anq v̄ = ALn q v̄/L = Nv̄ q/L,

and that v̄ is average of each carrier’s velocity:

v̄ =
1

N

∑
i

vi →
〈
v̄2
〉

=
1

N2
N
〈
v2i
〉

=
1

N

〈
v2i
〉
,

we find noise current is expressed by mean square of carrier velocity:〈
i2N
〉

=
〈
I2
〉

= N2q2
〈
v̄2
〉
/L2 = Nq2

〈
v2i
〉
/L2.

Same thing can be said for frequency component:〈
i2N
〉
ω

= Nq2
〈
v2i
〉
ω
/L2

Inserting Eq. (15) and Eq. (16), we find spectral density of noise current〈
i2N
〉
ω

=
N

L2
q2
〈
v2i
〉
ω

=
Nqµ

L2
· 4kT

2π
· 1

1 + ω2τ2c
. (17)

Recalling that σ = nqµ, R = L/Aσ, this reduces to the thermal noise formula for
ω � 1/τc, 〈

i2N
〉
f

= 2π
〈
i2N
〉
ω

= 4kT/R

Note that Eq. (17) corresponds to Eq. (14), i.e., noise current power spectral density
is proportional to conductance.

2.2.5 Drift current

Now we apply voltage V to the conductor and let net current flow. As we will see later
in Section 2.2.8, τc can be interpreted as average time that particles “fly” freely before
impacted by thermal agitation force. Thermal velocity vT times τc is called mean free
path l = vT τc. Thermal velocity vT can be written with l as

v2T =
kT

m
, vT =

l

τc
→ vT =

kT

m
· τc
l

= µ
kT/q

l
.

Recalling that drift velocity vD is µĒ=µV/L, ratio between drift velocity and thermal
velocity is

vD
vT

=
V

kT/q
· l
L
.

In usual circuit setups, V and kT/q is about the same order. Mean free path is in the
order of nano meters, whereas L is in the order of micro meters, drift current hardly
affects each carrier’s activity, hence noise:〈

v2i
〉

= v2D + v2T ∼ v2T .

35



2.2.6 Diffusion phenomena and Nernst-Einstein relation

Now we would like to see how carrier particle travel by thermal agitation force. We
place x-axis along with the conductor and set x = 0 somewhere in the middle of the
conductor. Equation of motion for a carrier at the origin with ẋ = 0 at t = 0 is

mẍi = −m
τc
ẋi + qEi or xi/Ei =

q τc/m

s (1 + s τc)
= µ

(
1

s
− τc

1 + s τc

)
.

Using result obtained in Example of Section 1.7.3,〈
xi(t)

2
〉

= πµ2
(
t+

τc
2

(
1− e−2t/τc

)
− 2τc

(
1− e−t/τc

)) 〈
E2i
〉
ω
,

∼ πµ2t ·
〈
E2i
〉
ω
. (t� τc)

Inserting Eq. (16) to this, we get〈
xi(t)

2
〉

= 2µkT/q · t. (18)

Carrier particle does not stay where it used be but travels indefinitely even though
average of its driving force (Ēi) is zero. We observe this as diffusion phenomena.6

For diffusion phenomena, there is an empirical macroscopic law:

j = −D ∂n

∂x
.

Combining this and law of continuity,

∂n

∂t
+

∂j

∂x
= 0,

yields diffusion equation:
∂n

∂t
= D

∂2n

∂x2
.

One solution is

n(x, t) =
N√

4πDt
e−x

2/4Dt for n(x, 0) = Nδ(x).

Therefore mean square of a carrier position in case it is at x = 0 at t = 0:〈
x(t)2

〉
=

∫ ∞
−∞

x2 n(x, t) dx = 2D t. (19)

By comparing with Eq. (18), we get Nernst-Einstein7 relation:

D/µ = kT/q.

6See Appendix A.
7According to Wannier, this formula was used by Nernst in 1884 (before Einstein), to determine the

magnitude of charge carried by an individual ion in a solution. [9]
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2.2.7 Diffusion constant and carrier velocity

We have just learnt average displacement of carrier
〈
x(t)2

〉
is expressed using diffusion

constant D as 〈
x(t)2

〉
= 2D t.

How about velocity? By combining Nernst-Einstein relation qD/µ = kT and thermal
velocity

〈
v2i
〉

= kT/m and mobility µ = qτc/m, we find〈
v2i
〉

= D/τc.

Recalling that autocorrelation is Fourier transform of spectral density, we find auto-
correlation of velocity φ(t) = 〈vi(0)vi(t)〉 using Eq. (15) and φ(0) =

〈
v2i
〉

= D/τc,

φ(t) = 〈vi(0)vi(t)〉 =
1

2

∫ ∞
−∞

〈
v2i
〉
ω
eiωtdω =

D

τc
e−|t|/τc .

Note that factor 1/2 is came from the fact that 〈vi〉ω is single sided spectral density.
Therefore 〈

v2i
〉
ω

=
4D

2π
· 1

1 + ω2τ2c
.

From Eq. (17) noise current spectral density

〈
i2N
〉
ω

=
Nq2

L2
· 4D

2π
· 1

1 + ω2τ2c
=

4q

2π
· AqDn

L
· 1

1 + ω2τ2c
.

2.2.8 Mean free time

The formula we derived in Section 1.7 is valid for zero initial conditions, hence Eq. (18)
is for such condition. The average displacement is insensitive to the initial condition
after a certain period of time, however the solution with initial condition gives an
interesting idea for τc. Namely when a particle is moving at v0 at t = 0, average
displacement is given by 〈

x2(t)
〉

= v20 t
2 for t� τc,

meaning that the particle “flies” freely for a short period of time before it is impacted by
thermal agitation force, and τc can be interpreted as mean free time (before “collision”).
Here we would like to derive above formula according to Uhlenbeck and Ornstein.[7]

With A(t) = qEi/m, the equation for v = ẋ can be written as

v̇ +
1

τc
v = A(t).
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If we notice that

d

dt

(
et/τc v

)
= et/τc v̇ +

1

τc
et/τc v = et/τcA(t),

→ et/τc v = v0 +

∫ t

0
eξ/τcA(ξ) dξ,

v can be written as follows:

v = v0 e
−t/τc + e−t/τc

∫ t

0
eξ/τcA(ξ) dξ. (20)

Therefore v2:

v2 = v20 e
−2t/τc + 2 v0 e

−2t/τc
∫ t

0
eξ/τcA(ξ) dξ

+ e−2t/τc
∫ t

0

∫ t

0
e(ξ+η)/τcA(ξ)A(η) dξdη.

If we take ensemble average, the second term vanishes since 〈A(t)〉 = 0.

〈
v2(t)

〉
= v20 e

−2t/τc + e−2t/τc
∫ t

0

∫ t

0
e(ξ+η)/τc 〈A(ξ)A(η)〉 dξdη (21)

We may want to use the fact that A(t) is white noise, its autocorrelation function is
proportional to delta function. However we would like to proceed a bit more for later
convenience. By taking r = ξ + η and s = ξ − η as new variables the integral become∫ t

0

∫ t

0
e(ξ+η)/τc 〈A(ξ)A(η)〉 dξdη =

1

2

∫ 2t

0
er/τc

∫ t

−t
〈A ((r + s)/2)A ((r − s)/2)〉 ds dr,

where factor 1/2 is Jacobian ∂(ξ, η)/∂(r, s). Recalling that autocorrelation depends
only on difference of time, inner integral does not depend on r:∫ t

−t
〈A ((r + s)/2)A ((r − s)/2)〉 ds =

∫ t

−t
〈A(0)A(t)〉 dt.

Therefore, we can execute integral for r, then Eq. (21) becomes

〈
v2(t)

〉
= v20 e

−2t/τc +
τc
2

(
1− e−2t/τc

)∫ t

−t
〈A(0)A(t)〉 dt. (22)

Now we want to use A(t) is white noise. Let’s say 〈A(0)A(0)〉 = Cδ(t), and using the
fact that

〈
v2
〉

should be thermal velocity kT/m for t→∞, we find〈
v2(t)

〉
= v20 e

−2t/τc +
kT

m

(
1− e−2t/τc

)
, C =

2kT

mτc
.
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Integrating Eq. (20) yields

x− x0 = v0 τc

(
1− e−t/τc

)
+

∫ t

0
e−η/τc

∫ η

0
eξ/τcA(ξ) dξdη.

By squaring, averaging and calculating the integral in the same way as before, we get〈
(x− x0)2

〉
= v0 τ

2
c

(
1− e−t/τc

)
+

2µkT

q

(
t+

τc
2

(
1− e−2t/τc

)
− 2τc

(
1− e−t/τc

))
.

This reduces to the same result we get in the previous section for t� τc, and for t� τc
it becomes the formula we want.〈

(x− x0)2
〉

= v20 t
2

As for velocity, it approaches thermal velocity very quickly at rate of τc/2. Therefore
we can draw a naive picture of particles flying at thermal velocity vT and changing its
direction at rate of 1/τc, or after l = vT τc of flight.

Non white case Even in case A(t) is not white, we can still get some interesting
result as long as 〈A(t)〉 = 0. Eq. (22) becomes for t→∞,〈

v2
〉

= lim
t→∞

〈
v2(t)

〉
=

τc
2

∫ ∞
−∞
〈A(0)A(t)〉 dt.

Recalling that A(t) = qEi/m and that
〈
v2
〉

= kT/m, we get relation between mean
free time and thermal agitation force:

1

τc
=

q2

2mkT

∫ ∞
−∞
〈Ei(0)Ei(t)〉 dt.

The right hand side may be calculated by considering details how carriers are scattered.
Recalling that conductivity σ is n q2τc/m, this can be seen as a formula which gives
resistance (τc) from noise (Ei), while Nyquist formula gives noise from resistance.

A few words on Brownian motion Brownian motion is motion of a small but
macroscopic scale particle (pollen) caused by bombardment of surrounding molecules
(water). Its bombardment of molecules is a bunch of small impulses, the particle is
considered to be driven by white noise. Equation of motion for this particle is the
same as the case of a carrier driven by thermal agitation force, the only difference
is mass of the particle is huge. Carrier particles change their direction completely
randomly by a single impulse, while it is less significant for a particle in Brownian
motion. Furthermore time scale of observation is much longer than the rate of impulse,
which makes it difficult to measure exact velocity (or kinetic energy) at any instant,
thermal velocity tends to be underestimated. However, displacement is relatively easy
to measure and agreement with observation and theory (Eq. (18)) was one of the
evidence of molecular nature of matter.
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2.3 Nyquist’s derivation of Nyquist formula

The author recommends everyone to read Nyquist’s original paper, “Thermal agitation
of electric charge in conductors”, Phys. Rev. 32, 110 (1928). This is a great example
of how we want to explain things. In some sense Section 2.1 is an inferior elaboration of
this classic paper. However, I imagine, he must have analyzed some specific model like
what we did in Section 2.2 and examine the result he’d got carefully before he came
up with his explanation. Classical carrier particle is not fully represent the reality but
it was a good starting point and what I demonstrated there was an example of how to
formulate and analyze a very specific problem. By carefully examining the result or
the process to the result, you may be able to find what is the essential point and may
also be able to set up more generic problem. (In this case, it was the rate of energy
transfer between a system to the other.)

2.4 Net current

When a resistor has net current, i.e., there is net energy flow from the resistor to
the environment, we can’t use statistical mechanics, can we? The total current is
superposition of net current and noise current and we can think net current as a part
of the environment. We can apply statistical mechanics for the noise component as
long as temperature of the resistor is uniform.

I Z(I) iN = I Z(I) + Z(I) iN

In case resistance is a function of net current I, noise spectral density

〈
i2N
〉
f

= 4kT Re

(
1

Z(I)

)
.

Wrong example Recalling that conductance g of p-n junction diode is ID/vt, noise
spectral density for p-n junction diode would be,〈

i2N
〉
f

= 4kTg = 4kTID/vt = 4qID. (wrong!)

Therefore p-n junction diode is noiseless when net current is zero.... Wait a minute,
there’s something wrong.
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2.5 Semiconductor noise

2.5.1 Shot noise

To get the correct answer we need to start from Shockley formula,

ID = Is

(
eVD/vt − 1

)
.

At equilibrium where net current is zero, conductance

g(ID)|ID=0 =
∂ID
∂VD

∣∣∣∣
ID=0

=
Is
vt
.

Therefore we get finite noise spectral density:〈
i2N (0)

〉
f

= 4kTg(0) = 4kTIs/vt = 4qIs.

With net current of ID, semiconductor noise is usually explained by “shot noise”.
Shockley formula can be interpreted as sum of forward going and reverse going current:

ID = IF − IR,

where
IF = Ise

VD/vt , IR = Is.

“Shot noise” explanation states that each current has independent noise component of〈
i2F
〉
f

= 2qIF and
〈
i2R
〉
f

= 2qIR. Here’s an observation.〈
i2N (ID)

〉
f

=
〈
i2F
〉
f

+
〈
i2R
〉
f

= 2qIF + 2qIR.

At equilibrium where ID = 0, this reduces to above thermal noise formula:〈
i2N (0)

〉
f

= 2qIs + 2qIs = 4qIs.

However at ID � Is, where saturation current is negligible (ID ∼ IF ), we get only half
of the “wrong” conclusion shown in the previous page:〈

i2N (ID)
〉
f

= 2qID = 2kTg(ID).

Figure 4 (a) shows measurement data. Same thing can be said for subthreshold
MOSFET and measurement data is shown in Figure 4 (b). Note that noise magnitude
is still proportional to conductance and temperature, only it becomes half in semicon-
ductor. As we will see in the next section, “shot noise” can be understood as thermal
noise of diffusion current. As for MOSFET in active region, where drift current plays
more role, noise suppression happens only partially. We use γ to represent this partial
suppression: 〈

i2N
〉
f

= γ4kTgm,

where γ = 2/3 for long channel device. [8]
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(a) (b)

Figure 4: (a) Equivalent noise resistance (according to Nyquist equation) over differential
resistance of diode junction (vertical) as dependent on diode forward current (horizontal)
of junction diode 1N91. Curve calculated, taking account of diode resistance of 20-ohm
outside junction. Points measured. [1] (b) Measured current and noise characteristics of a
subthreshold MOS transistor. The lower curve is the current normalized by its saturation
value Isat so that it is 1 in saturation and zero when Vds is 0. The upper curve is the noise
spectral density ∆I2 normalized by dividing it by 2qIsat∆f , where ∆f is the bandwidth and
q is the charge on the electron. As the transistor moves from the linear region to saturation,
the noise spectral density decreases by a factor of two. The lines are fits to theory using
the measured value of the saturation current and the value for the charge on the electron
q = 1.6× 10−19C. [5]
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2.5.2 Diffusion current noise

Suppose that some external force makes non-uniform carrier density, there must be
diffusion current

j = −qD ∂n(x)

∂x
.

In case total current is dominated by this diffusion current, gradient of n(x) is constant
because current at any cross section must be the same:

∂n(x)

∂x
=
n(L)− n(0)

L
=
n(0)

L

(
n(L)

n(0)
− 1

)
, (constant)

Therefore total current

I = Aj =
AqDn(0)

L

(
1− n(L)

n(0)

)
= Is

(
1− n(L)

n(0)

)
,

where

Is =
AqDn(0)

L
.

Depletion region of p-n junction makes it possible to create such situation described
here (carrier density gradient, absence of drift current). In subthreshold MOSFET, for
example, n(0) ∝ exp(−qVgs/kT ) and n(L)/n(0) = exp(qVds/kT ).[6] Therefore

Id = Is

(
1− eqVds/kT

)
, Is ∝

A

L
e−qVgs/kT .

This is current-voltage relation MOSFET in subthreshold region. Note that q is nega-
tive for NCH transistors.

As for noise, since diffusion current is nothing but current driven by thermal ag-
itation force, we can use Eq. (17). Inserting N̄ = AL(n(0) + n(L))/2 into Eq. (17)
yields 〈

i2N
〉
ω

=
A

L
· n(0) + n(L)

2
· 4kTqµ

2π
.

Using Nernst-Einstein relation D = µkT/q, we get “shot noise”,

〈
i2N
〉
ω

=
2q

2π
· AqDn(0)

L

(
1 +

n(L)

n(0)

)
=

2q

2π
Is

(
1 +

n(L)

n(0)

)
.

For example, noting that device current I is very close to Is for n(0)� n(L),〈
i2N
〉
ω

= 2qI/2π. (n(0)� n(L)) ,
〈
i2N
〉
ω

= 4qIs/2π (n(L) = n(0))

“Shot noise” is explained in terms of thermal noise of diffusion current.
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2.6 Electromagnetic wave

In Section 2.1, we discussed statistical mechanics of an LC tank circuit which exchanges
energy with the environment. For an isolated LC tank circuit, energy is exchanged by
electromagnetic wave (radiation). Here we would like to focus on statistical mechanics
of electromagnetic wave in empty space at equilibrium with the environment. Such
electromagnetic wave is known as black-body radiation. There is a lot of excellent
literature on black-body radiation available, we just go over briefly.

As shown in Appendix C, electromagnetic wave is also considered as ensemble of
harmonic oscillators. Due to the fact that electromagnetic wave is transverse, there are
two oscillators for a wave vector k. The number of possible wave vectors in a volume
element d3k is V d3k/(2π)3. Using dispersion relation ω = ck and polar coordinate,
this can be written as

V d3k

(2π)3
=
V k2 sin θdkdθdϕ

(2π)3
=
V ω2 sin θdωdθdϕ

(2π c)3
.

Therefore, by integrating angular part and multiplying by 2 for that fact that each k
has two harmonic oscillators, the number of oscillators with frequencies between ω and
ω + dω is found to be

V ω2dω

π2c3
.

At equilibrium, each harmonic oscillator has energy of kT , therefore energy of electro-
magnetic wave with frequencies between ω and ω + dω is

dUω =
V kTω2dω

π2c3
.

Spectral density of electromagnetic wave has frequency dependence while that of cur-
rent doesn’t. This is the consequence of the fact that electromagnetic wave is three
dimensional, while current is one dimensional. However, this Rayleigh-Jeans law does
not match with observation at high-frequencies. Furthermore total energy or “inte-
grated noise”,

∫∞
0 dUω, diverges. To get correct answer, we need to go to quantum

mechanics. In fact, this problem of black-body radiation led discovery of quantum
nature of elementary interactions of matter. According to quantum statistics, each
harmonic oscillator of electromagnetic field has energy of

~ω
e~ω/kT − 1

+
~ω
2

= ~ω coth
~ω

2kT
(23)

instead of kT , which gives famous Planck’s formula instead of Rayleigh-Jeans law:

duω = dUω/V =
~

π2c3
· ω3dω

e~/kT − 1
.
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Here we have omitted zero-point energy term (~ω/2) in Eq. (23), we will come back
to this later. Planck’s formula has peak at ~ω/kT ∼ 2.8, which enable us measure
temperature of the matter by spectroscopy of electromagnetic wave. Total energy is
obtained by integrating Planck’s formula:

uω =

∫ ∞
0

~
π2c3

· ω3 dω

e~ω/kT − 1
=
π2(kT )4

15c3~3

Total energy is proportional to T 4, which is called Stephan-Boltzmann law. Eq. (23)
gives kT at low frequencies where ~ω � kT . Therefore quantum effect arises at high
frequencies. At high frequencies where ~ω � kT , Planck’s formula reduces to Wien’s
formula:

duω =
~

π2c3
ω3e−~ω/kTdω. (24)

Both Wien and Boltzmann derived their formulae (aside from exact proportionality co-
efficient) from classical thermodynamics. Appendix B provides supplemental material
from the classical point of view.

For electromagnetic wave, we had to go quantum mechanics to get correct spectral
density throughout all frequency range. How about carrier? Should we use Eq (23)
instead of kT which seemingly gives better results? I doubt it. For normal room
temperature, kT/~ is about 6THz, which is far above frequencies of our interest and
~/kT is 25fs, which is about the same order or smaller than τc of metals. From
Eq. (17) high frequency noise component is cut-off at ω ∼ 1/τc anyway. It is unlikely
that quantum mechanical effect shows up in usual electronic circuit setups.

Zero-point energy Zero point energy gives infinite contribution to the total energy,
however it is constant. Existence of such term does not affect thermodynamic relations.
(In general physics laws, change of energy is important and we can always alter reference
point of energy.) Therefore we can omit this term for total energy calculation. However,
in case electromagnetic wave is confined in a very narrow volume, the number of possible
wave vector reduces significantly and contribution of zero-point energy term to the total
energy also reduces, resulting total energy contribution of this term become a function
of volume. This can be observed as attracting force between to metal plates placed a
few nano meter apart. (Casimir effect)
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Appendix A Random Walk and Diffusion

In section 2.2.6, we introduced diffusion equation rather precipitously and we came
up with an idea that particles driven by white noise fly freely for some distance l in
Section 2.2.8. Here we will derive diffusion equation from this free flying model, which
can directly be translated into random walk problem.

Consider a particle hopping for length l either to the left (−l) or to the right (+l).
For each time step tn = nτ , that particle makes decision whether it is going to stay or
move to the left or move to the right. The position of a particle after n step, x(tn),
can be written as follows:

x(tn) = e1 + e2 + ...+ en,

where ei is the displacement the particle made for each step, i.e., either +l (moved to
the right) or −l (left) or 0 (stay). Let’s say probability for a particle to make move is
p, expectation value for ei and e2i is respectively,

〈ei〉 = p · (+l) + p · (−l) + (1− 2p) · (0) = 0,〈
e2i
〉

= p · (+l)2 + p · (−l)2 + (1− 2p) · (0)2 = 2 p l2.

And we assume each step is independent, i.e., 〈eiej〉 = 〈ei〉 〈ej〉 = 0 for i 6= j. Therefore
expectation value for x(tn) and x2(tn) is respectively,

〈x(tn)〉 =
N∑
i=1

〈ei〉 = 0,
〈
x2(tn)

〉
=
∑
i,j

〈eiej〉 =
∑
i

〈
e2i
〉

= 2Np l2 = 2 · p l
2

τ
· tn.

We get Eq. (19) with D = p l2/τ .
Now we want to consider particle distribution. Suppose that there is n(x, t) particle

at position x at time t, n(x, t + τ) will be sum of number of particles that 1) stay, 2)
come from the left, 3) come from the right:

n(x, t+ τ) = (1− 2p) · n(x, t) + p · n(x− l, t) + p · n(x+ l, t). (25)

We would like to observe smooth n(x, t) in a scale much greater than l and τ , we take
Taylor expansion of n(x, t):

n(x, t+ τ) = n(x, t) + τ · ∂ n(x, t)

∂t
,

n(x± l, t) = n(x, t) ± l · ∂ n(x, t)

∂x
+

l2

2
· ∂

2 n(x, t)

∂x2
.

Inserting these into Eq. (25) yields diffusion equation:

∂ n(x, t)

∂t
=

p l2

τ
· ∂

2 n(x, t)

∂2x
.

(The first order term in Taylor expansion with respect to l cancels out.)
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Appendix B Black-body Radiation

In section 2.6, we have discussed black body radiation using statistical mechanics
(equipartition theorem) since it follows discussion of Nyquist formula which also uses
equipartition theorem. In this appendix, we will derive Stephan-Boltzmann law and
Wien’s formula from pure classical point of view (electromagnetism and thermodynam-
ics) to show how far we can go without quantum mechanics.

B.1 Gas equation of electromagnetic wave

Consider a cubic box of L made of perfect conductor. If there is a electromagnetic
wave inside the box, it will be reflect back without losing energy, resulting persistent
standing wave. In case electromagnetic wave is isotropic, one can show8 that pressure
p is equal to one third of electromagnetic energy per unit volume u,

p =
1

3
u,

by calculating force acting on a wall. Therefore

pV =
1

3
U

can be considered to be gas equation for isotropic electromagnetic wave, where U = V u
is internal energy of electromagnetic “gas”. Note that for the ideal gas, corresponding
equation is pV = 2

3U and U does not depend on V .

B.2 Stephan-Boltzmann Law

Once we know gas equation, we can apply thermodynamics to it. From U = TS + F

u(T ) =

(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

+

(
∂F

∂V

)
T

,

= T

(
∂p

∂T

)
V

− p,

where we used thermodynamic relation p = −(∂F/∂V )T and (∂S/∂V )T = (∂p/∂T )V .
Inserting p = u/3, we get

u(T ) =
T

3

du(T )

dT
− u(T )

3
→ T

du(T )

dT
= 4u(T ).

Therefore u is proportional to T 4. We use a for proportionality constant.

u(T ) = aT 4.

8 See Appendix C.
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B.3 Wien’s law

We’d like to decompose energy into frequency components, or spectral density uω:

u(T ) =

∫ ∞
0

uω dω,

and find what we can say about uω. Wien showed that uω can be written with a
function f as

uω = ω3f(ω/T ) (26)

by considering adiabatic expansion of electromagnetic wave confined in perfect conduc-
tor and Doppler shift associated with the expansion. Above formula is called Wien’s
law. Once we know uω for one particular temperature, we can find uω for any temper-
ature using this formula. Although we can not say any further about f , we can show
that if uω has a peak, the location has to be proportional to T by solving duω/dω = 0.
Wien speculated his formula Eq. (24) from Eq. (26) and observation data, with ~ in
the exponent as one of fitting parameters. It is interesting to see both Rayleigh-Jeans
law and Planck’s formula has the form of Eq. (26).

Here I would like to derive Eq. (26) by using dimension analysis rather than demon-
strating Wien’s original derivation which can be found elsewhere. In general, dimension
analysis can not give you a proof, but it is quick and sometimes very useful like this
case.

What we want is energy spectral density per unit volume uω. First of all, we know
that temperature is average energy of the system and that it always shows up in the
form of kT in laws of physics, where k is Boltzmann constant. Since we want to find
spectral density of electromagnetic wave, let us use speed of light c as well as ω and
kT and there is no other physical quantity to specify this system. Rayleigh-Jeans law
is obtained by making energy spectral density from these three quantities:

uω = A
kT

c3
ω2, (27)

where A is dimensionless constant. uω has to satisfy Stephan-Boltzmann law:

u(T ) =

∫ ∞
0

uωdω = aT 4 (28)

Suppose that this dimensionless quantity is in fact a function of ω and T , we can
write such function as A(ωT r).9 Note that at this moment we do not know how to

9In case A’s dependency is ωsT r, we can always rewrite A as A((ωT r/s)s), and replace A and r by
A′(x) = A(xs) and r′ = r/s.
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make dimensionless quantity just from ω and T . We will come back this issue shortly.
Inserting Eq. (27) into Eq. (28) yields

u(T ) =
kT

c3

∫ ∞
0

ω2A(ωT r)dω.

We want to take T out of the integral, by introducing y = ωT r,

u(T ) =
kT

c3

∫ ∞
0

y2

T 2r
A(y)

1

T r
dy =

kT (1−3r)

c3

∫ ∞
0

y2A(y)dy.

Thus, since the integral is constant, r has to be −1 to meet u(T ) ∝ T 4. Finally uω can
be written as follows:

uω ∝ A(ω/T ) · kT
c3
ω2 = ω3 · A(ω/T )

c3
kT/ω.

This is Wien’s law. Now we have to come back to the issue mentioned earlier – how
to construct dimensionless quantity from ω and T . This issue is now reduced to how
to construct dimensionless quantity from ω/T . We know Boltzmann constant which
relates temperature to energy. Therefore it suggests a universal constant which relates
frequency to energy. Planck’s constant is indeed such a constant.

B.4 Black-body

Why we only care about electromagnetic wave in a section titled “black-body radiation”
which seemingly about radiation from some kind of material?

In 1860, Kirchhoff showed, by thermodynamic argument, that ratio of absorption
coefficient of light and radiation intensity does not depend on the material.10 Let’s
say, for a material X at temperature T , AX(ω, T ) is absorption coefficient of fre-
quency ω, i.e., material X reflects back (1 − AX(ω, T )) of light arrives and absorbs
AX(ω, T ) of it. Suppose that JX(ω, T ) is radiation intensity of X, Kirchhoff showed
that JX(ω, T )/AX(ω, T ) is a universal function which depends only on ω and T . There-
fore if we measure radiation of a material which absorbs light perfectly, i.e., absorption
coefficient is unity, we can calculate radiation intensity from its absorption coefficient.
Such material, because it absorbs light perfectly, is called black-body. A small hole to
a cavity is a close approximation of such black-body, since light can go inside freely and
has to be reflected by wall many times before coming out from the hole, likely vanishes
by that time. Light comes out from the hole is mostly leakage of electromagnetic wave
inside. Therefore black-body radiation is in fact electromagnetic wave in an empty
space at equilibrium with surrounding material.

10Just like Nyquist did for conductors, considering two material at thermal equilibrium through an ideal
optical filter. Nyquist used perfectly matching transmission line (no reflection). It is not difficult to show.
By the way, thermal noise depends only on resistance and temperature and not on the kind of material
conductor is made of.

49



Appendix C Isotropic Electromagnetic wave

Our goal is to find pressure of electromagnetic wave confined in walls of a cubic box
made of perfect conductor. There’s no field outside the box. However, we can think of
a periodic system by placing the same box one next to the other infinitely, so that we
can use Fourier transform to represent periodic function.

C.1 Periodic boundary condition

Let’s say the length of one side of the box is L and place x, y, z axis along with the box
as usual. A function f of position r inside the box can be decomposed into frequency
components:

f(r) =
∑
k

Fk e
ik·r, ki =

2πni
L

, i = {x, y, z},

where nx, ny, nz is integer. There is orthogonality of Fourier basis:

δk,k′ =
1

V

∫
V
ei(k−k

′)·r d3r

Differentiating kx with respect to nx yields

∆kx =
2π

L
∆nx.

In another words, the number of possible kx within kx and kx + ∆kx is

∆nx =
L

2π
∆kx.

Similarly, the number of possible k within volume element ∆kx∆ky∆kz at k:

L

2π
∆kx ·

L

2π
∆ky ·

L

2π
∆kx =

L3

(2π)3
∆kx∆ky∆kz =

V

(2π)3
∆3k,

where V = L3 is the volume of the box. ∆3k is just a short hand for volume element
∆kx∆ky∆kz. We have used this in Section 2.6.

C.2 Plane wave solution for electromagnetic field

Now we want to find electromagnetic field in empty space. There is no charge or
current inside the box. In such case Coulomb gauge (∇·A = 0) with zero scalar

50



potential (φ(r) = 0) is convenient choice. Maxwell’s equation for empty space:

∇×E +
1

c

∂cB

∂t
= 0, ∇×cB − 1

c

∂E

∂t
= 0,

E = −∂A
∂t

, B = ∇×A.

Note that ∇·E = 0 and ∇·B = 0 is automatically satisfied with above equations.
Here we treat cB (speed of light times B field) as one symbol so that cB has the same
dimension as E. (c∂t is length, ∇ is inverse of length).

Inserting the second line of the equations into the second of the first line yields

∇×∇×A +
1

c2
∂2A

∂2t
= 0 → ∇(∇·A)−∇2A +

1

c2
∂2A

∂2t
= 0,

where we used ∇×∇×A = ∇(∇·A)−∇2A. Since ∇·A = 0, we get wave equation:

∇2A− 1

c2
∂2A

∂2t
= 0.

To find solution we first apply periodic boundary condition:

A(r) =
∑
k

Ak e
ik·r.

There will be current on the surface of walls (because it is made of conductor) which
sets another boundary condition other than periodicity such as E has to be normal to
a wall etc. However we would like to leave it for later and take a look at just one plane
wave first.

Plane wave, noting that A(r) is real:

A(r) = ak e
ik·r + c.c.,

where c.c. is complex conjugate of the first term, namely a∗k exp(−ik · r). Inserting
this into the wave equation above yields

äk = −(ck)2 ak, (29)

where k is norm of k, i.e., k = |k|. Therefore ak can have time dependence of
exp(±ickt), but we take exp(−ickt) for traveling wave in k direction. From ∇·A = 0,

∇·A = ik ·
(
ak e

ik·r − a∗k e
−ik·r

)
= 0. (30)

E field, noting that ak ∝ exp(−ickt):

E = −∂A
∂t

= ick
(
ak e

ik·r − a∗k e
−ik·r

)
. (31)
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Because of Eq. (30), E is perpendicular to the wave vector k. B field:

cB = c∇×A =
k

k
× ick

(
ak e

ik·r − a∗k e
−ik·r

)
=

k

k
×E.

Therefore E = cB, and B is perpendicular to both k and E. Energy density for a
plane wave of wave vector k:

uk =
ε0
2

(
E2 + c2B2

)
= ε0E

2 = ε0E ·E.

Poynting vector, using A×B×C = (A·C)B − (A·B)C and k·E = 0:

sk = c ε0E×cB = c ε0E×
k

k
×E = c ε0

(
E2 k

k
−
(
E · k

k

)
E

)
,

=
k

k
c ε0E

2 =
k

k
c uk.

Energy flows k direction at speed of c. Recalling that momentum is energy flux divided
by c squared, relation between momentum density gk and energy density will be

gk =
sk
c2

=
k

ck
uk.

These quantities are vibrating over space and time. To obtain pressure which is flux
of average momentum density, let us average uk over the volume.

ūk =
1

V

∫
uk d

3r =
1

V

∫
ε0E ·E d3r

Inserting Eq. (31) and noting that vibrating term vanishes with integration, we get

ūk = 2 ε0(ck)2 ak ·a∗k .

Since ak ∝ exp(−ickt), ūk does not have time dependence. Similarly, Poynting vector:

s̄k =
k

k
c ūk.

As we will see in the next section, pressure is nothing but flow of momentum density,
when a plane wave is reflected by a wall normal to k the wall receives pressure pk of

pk = momentum density× speed = c ḡk = s̄k/c = ūk.

For isotropic wave, it is superposition of plane waves with total momentum is zero,
i.e., k is uniformly distributed over x, y and z directions. Total pressure p will be one
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third of ū, total energy density averaged over the volume. From orthogonality of plane
waves, ū is simply sum of ūk. Therefore,

p =
1

3
ū, ū =

∑
k

ūk .

We have obtained what we want without applying the final boundary condition
of walls made of perfect conductor. In fact, for black-body radiation, this is enough
and preferable. At thermal equilibrium, walls radiate back the same amount of energy
(momentum) it absorbs, which gives the same amount reaction as reflection by perfect
conductors in average.

Eq. (29) indicates that ak is a vector harmonic oscillator, however ak has to be in
a plane normal to k, the degree of freedom (number of independent oscillators) is 2
(not 3). In another words, each k has two harmonic oscillators.

C.3 Energy/Momentum flow and pressure

Consider a particle in a cubic box of V=L3, moving at speed of vx in x direction. When
the particle bounced back at a wall of the box, momentum change is 2mvx and it will
travel 2L before come back to the same wall. Therefore average force on the wall

F = momentum change per impact× number of impact per unit time,

= 2mvx ·
vx
2L

= vx ·
mvx
L

.

Pressure p is flow of momentum density mvx/V , or twice of energy density mv2x/2V :

p = F/L2 = vx ·
mvx
V

= 2 · 1

2
mv2x

/
V (32)

When we have N particles in the box consisting uniform gas, momentum flow is dis-
tributed over x, y and z direction uniformly, pV is two thirds of the total energy U :

p =
2

3
· U
V
, U =

N∑
i=1

1

2
mv2i ,

where vi is velocity of i-th particle.
In the special theory of relativity, energy u and momentum g of mass particle m is

u =
mc2√

1− (v/c)2
, g =

mv√
1− (v/c)2

.

Therefore, relation between energy and momentum, g = vu/c2 holds for both mass
particle and electromagnetic wave, i.e., momentum is equal to energy flow divided
by c2. In case v � c, kinetic energy is second order small quantity: u ∼ mc2, and
momentum is energy flow divided by c2, i.e., g ∼ v ·mc2/c2 = mv, resulting u = g2/2m
and pV = 2

3U . In case m = 0, v = c, we got u = cg and pV = 1
3U .
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C.4 Statistical Mechanics

We have so far derived gas equation of electromagnetic wave from kinetics. The same
can be obtained in terms of statistical mechanics. According to the (classical) statistical
mechanics, the system partition function Z for N non-interacting particles is

Z =
1

N !
· (f)N ,

where f is one-particle partition function

f =
1

(2π~)3

∫ ∫
e−ε(p,r)/kT d3p d3r.

Here we use ε(p, r) and p for energy and momentum of a particle to align with notation
found in many text books. Since we are thinking of free particles in an empty space
(no external potential), energy does not depend on r, it only depends on magnitude
of momentum p = |p|. Therefore integral over r is equal to the volume V and integral
over p can be separated into polar coordinate, with angular part is simply 4π:

f =
4πV

(2π~)3

∫ ∞
0

p2 e−ε(p)/kT dp.

Since ε(p) is a function of p only, integral is a function of kT only, therefore using
constant a and γ, f can be written as follows.

f = aV T γ = aV β−γ , β = 1/kT.

Let us recall that internal energy U and pressure P can be calculated from partition
function as follows.

U = −∂ lnZ

∂β
, P = kT

∂ lnZ

∂V
.

Internal energy

U = − ∂

∂β
ln(f)N = −N ∂

∂β
ln aV T γ = γNβ−1 = γNkT,

and pressure

P = NkT
∂

∂V
ln aV T γ =

NkT

V
.

Therefore
PV = NkT = U/γ.

Now, let us evaluate the integral to find γ. For non-relativistic particles, ε = p2/2m.
Therefore, by looking up gauss integral formula, we find∫ ∞

0
p2 exp

(
− p2

2mkT

)
dp ∝ (kT )3/2.
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As for electromagnetic wave, ε = cp, performing “integrate by part” two times we find∫ ∞
0

p2 exp
(
− cp
kT

)
dp ∝ (kT )3.

Therefore

PV =
2

3
U, (for non-relativistic particle)

PV =
1

3
U. (for electromagnetic wave)

PV = NkT is not valid for quantum mechanical gas but it can be shown that above
relations between P , V and U still hold for quantum mechanical case for both non-
relativistic particle and, of course, photon. Curious reader may refer, for example, §56
of Landau & Lifshitz [4].
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Appendix D Details of Eq. (11)

We want to find following integral:

I =

∫ ∞
−∞

f(iω) eiωt dω/2π,

where

f(iω) =
1

(1 + iωτ1)(1− iωτ2)
,

=
1

τ1τ2
· 1

(1/τ1 + iω)(1/τ2 − iω)
.

Re

Im

O

−1/τ1 1/τ2

ir

−ir

C

We extend domain to complex plane and take path C shown. With z = iω = reiθ,∮
C
f(z) eztdz/2πi =

∫
C1

f(z) eztdz/2πi+

∫
C2

f(z) eztdz/2πi,

where path C1 and path C2 is line from −ir to ir and semi-circle from ir to −ir,
respectively. I can be written as

I = lim
r→∞

∫
C1

f(z) eztdz/2πi = lim
r→∞

(∮
C
f(z) eztdz/2πi −

∫
C2

f(z) eztdz/2πi

)
.

Since f(z)→ 0 as r →∞, integral on C2 vanishes if t > 0 (Jordan’s lemma). The first
term can be calculated using residue theorem:∮

C
f(z) eztdz/2πi = lim

z→−1/τ1
(z + 1/τ1) f(z)ezt =

e−t/τ1

τ1 + τ2
. (t > 0)

Therefore, ∫ ∞
−∞

eiωt

(1 + iωτ1)(1 + iωτ2)
· dω

2π
=

e−t/τ1

τ1 + τ2
. (t > 0)

For t < 0, we can use semi-circle on the other side. Result is∫ ∞
−∞

eiωt

(1 + iωτ1)(1 + iωτ2)
· dω

2π
=

e−t/τ2

τ1 + τ2
. (t < 0)

In case τ1 = τ2 = τ , we get same answer for t < 0 and t > 0:∫ ∞
−∞

eiωt

1 + ω2τ2
· dω

2π
=

1

2τ
e−|t|/τ .
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Appendix E Noise of RLC resonator

In Section 2.1.3, we used approximation using ε = ω−ω0 to evaluate integral of absolute
square of admittance,

i/v ∼ − 1

R
· iλ

ε− iλ
, (33)

resulting Nyquist formula, 〈
v2
〉
ω
∼ 4kTR/2π.

In fact, the integral can obtained exactly using the same method as Appendix D and
above “∼” can be replaced by “=”. We could demonstrate it, however, here we like to
calculate autocorrelation of current instead. We start from admittance Y (iω),

Y (iω) =
1

R

iωτ3
(1 + iωτ⊕)(1 + iωτ	)

,

where

1/τ⊕,	 = λ± iω′0, ω′0 =

√
1− (λ/ω0)

2, τ3 = RC, ω2
0 = 1/LC, λ = R/2L.

Recalling that autocorrelation φ(τ) is Fourier transform of spectral density:

φ(τ) = 〈i(0)i(τ)〉 =
1

2

∫ ∞
−∞

〈
i2
〉
ω
e−iωτdω,

where factor 1/2 is came from the fact that
〈
i2
〉
ω

is single sided. Using〈
i2
〉
ω

= |Y (iω)|2
〈
v2
〉
ω
,
〈
v2
〉
ω

= 4kTR/2π,

we get with z = iω,

φ(τ) =
2kTR

L2

∫ i∞

−i∞

ω2e−zτ

(z + 1/τ⊕)(z + 1/τ	)(z − 1/τ⊕)(z − 1/τ	)
· dz

2πi

Using the same method as Appendix D, we find

φ(τ) =
kTR

L2

1

2λ · 2iω′0

(
1

τ⊕
e−|τ |/τ⊕ − 1

τ	
e−|τ |/τ	

)
.

Note that absolute sign of |τ | came from the fact that proper semicircle is different
for τ > 0 and τ < 0. For τ = 0, φ(0) =

〈
i2
〉

= kT/L, which matches result using
Eq. (33). For ω0 < λ, iω′0, 1/τ⊕,	 are real, resulting overshooting. For ω0 > λ, ω′0 is
real, resulting damped oscillation:

φ(τ) =
kTR

2L2
e−λτ

(
cosω′0τ

λ
− sinω′0τ

ω0

)
.
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Appendix F Useful Formula

Parallel impedance operator

(r1//r2) =
1

1/r1 + 1/r2
=

r1r2
r1 + r2

, (r1//r2//r3) =
1

1/r1 + 1/r2 + 1/r3
=

r1r2r3
r1 + r2 + r3

(r1//r2) = (r2//r1),
1

(r1//r2)
+

1

r3
=

1

(r1//r2//r3)
, (r1//c1) =

r1
1 + s r1c1

Minimum value

min

(
A

x
+Bx

)
=
√
AB, xmin =

√
A

B
.

Integral ∫ ∞
0

dω/2π

1 + (ω/ω0)
2 =

ω0

2π
tan−1

(
ω

ω0

)∣∣∣∣∞
0

=
1

4
ω0∫ ∞

ωs

dω

ω(1 + (ω/ω0)2)
=

1

2
ln

(ω/ω0)
2

1 + (ω/ω0)2

∣∣∣∣∞
ωs

=
1

2
ln

1 + (ωs/ω0)
2

(ωs/ω0)2

Two pole response function and its impulse response

vo/vi =
1

1 + s b+ s2 a
=

1

(1 + s τ⊕)(1 + s τ	)
(a > 0, b > 0)

1/τ⊕,	 =
b±
√
b2 − 4a

2a
=

b

2a

(
1±

√
1− 4a/b2

)
Discriminant 4a/b2:

4a/b2 < 1→ Exponential settling (overshooting)

= 1→ Critical damping

> 1→ Ringing

If 4a/b2 � 1,
1/τ⊕ = b/a− 1/b, 1/τ	 = 1/b

Canonical form of two pole amplifier

A(s) =
N

Q+ sB + s2A
=

A0

(1 + s τAA0)(1 + s τ⊕)

If 4AQ/B2 � 1:

A0 = N/Q, τA = B/N, 1/τ⊕ = B/A−Q/B
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Laplace transform

L{δ(t)} = 1, L{1} =
1

s
, L{e−t/τ1} =

τ1
1 + s τ1

, L{t/τ1 e−t/τ1} =
τ1

(1 + s τ1)2
.

1

(1 + s τ1)(1 + s τ2)
=

1

τ1 − τ2

(
τ1

1 + s τ1
− τ2

1 + s τ2

)
s

(1 + s τ1)(1 + s τ2)
= − 1

τ1 − τ2

(
1

τ1
· τ1

1 + s τ1
− 1

τ2
· τ2

1 + s τ2

)
1 + s τ3

(1 + s τ1)(1 + s τ2)
=

1

τ1 − τ2

(
τ1 − τ3
τ1

· τ1
1 + s τ1

− τ2 − τ3
τ2

· τ2
1 + s τ2

)
s

(1 + s τ1)2
=

1

τ21

(
τ1

1 + s τ1
− τ1

(1 + s τ1)2

)
1

s (1 + s τ1)
=

1

s
− τ1

1 + s τ1

1

s (1 + s τ1)(1 + s τ2)
=

1

s
− τ1
τ1 − τ2

· τ1
1 + s τ1

+
τ2

τ1 − τ2
· τ2

1 + s τ2

1

s (1 + s τ1)2
=

1

s
− τ1

1 + s τ1
− τ1

(1 + s τ1)2

1 + s τ3
s (1 + s τ1)(1 + s τ2)

=
1

s
− τ1 − τ3
τ1 − τ2

· τ1
1 + s τ1

+
τ2 − τ3
τ1 − τ2

· τ2
1 + s τ2

Approximation If τ1 � τ2,

s

(1 + s τ1)(1 + s τ2)
∼ 1

τ1τ2

(
τ2

1 + s τ2
− τ2
τ1
· τ1

1 + s τ1

)
1

s (1 + s τ1)(1 + s τ2)
∼ 1

s
− τ1

1 + s τ1
+
τ2
τ1
· τ2

1 + s τ2
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